
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2006

Uniform resource visualization
Kukjin Lee
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons, and the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Lee, Kukjin, "Uniform resource visualization " (2006). Retrospective Theses and Dissertations. 1271.
https://lib.dr.iastate.edu/rtd/1271

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1271?utm_source=lib.dr.iastate.edu%2Frtd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Uniform resource visualization

by

Kukjin Lee

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Diane T. Rover (Major Professor)

Dan Berleant
Yong Guan

Suraj Kothari
G. M. Prabhu

Iowa State University

Ames, Iowa

2006

Copyright © Kukjin Lee, 2006. All rights reserved.

www.manaraa.com

UMI Number: 3217285

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3217285

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the doctoral dissertation of

Kukjin Lee

has met the dissertation requirements of Iowa State University

Major Professor

For the Major Program

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

DEDICATION

To my beloved wife and parents

www.manaraa.com

iv

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES x

ACKNOWLEDGEMENTS xi

ABSTRACT xii

CHAPTER 1. INTRODUCTION 1

1.1 Performance Visualization 1

1.2 Motivation 3

1.3 Problem Statement 5

1.4 Objectives 9

1.5 Contributions 10

1.6 Organization of Dissertation 12

CHAPTER 2. VISUALIZATION MODEL 13

2.1 View 13

2.2 Uniform Resource Visualization (URV) 15

2.3 Performance Visualization in URV 16

2.4 Summary 20

CHAPTER 3. PERFORMANCE VISUALIZATION KNOWLEDGE 21

3.1 Performance Visualization Knowledge (PVK) 21

3.2 Performance Visualization Ontology (PVO) 23

3.3 PVO Representation 24

3.3.1 Class and Class Hierarchy 24

3.3.2 Properties 26

3.3.3 Instances 28

3.4 Ontology Query 32

3.5 Summary 33

www.manaraa.com

V

CHAPTER 4. VISUALIZATION COMPONENT 36

4.1 Visualization Component (VC) 36

4.2 Methodology for Creating Visualization Component 38

4.2.1 Step 1: Define Visualization Knowledge 40

4.2.2 Step 2: Design a Visual Design 42

4.2.3 Step 3: Determine Graphical Primitive 43

4.2.4 Step 4: Implement Graphical Primitives 45

4.2.5 Step 5: Implement a Template Visualization Component 51

4.2.6 Step 6: Implement a Visualization Component. 54

4.3 Summary 56

CHAPTER 5. VISUALIZATION COMPOSITION 57

5.1 Visualization Composition 57

5.2 Methodology for View-Level Composition (Synthesis) 62

5.2.1 Step 1: Compose Knowledge 62

5.2.2 Step 2: Identify New Visualization Components) 64

5.2.3 Step 3: Construct a New Visualization Component (VC) 65

5.3 Summary 67

CHAPTER 6. SPREADSHEET FOR SYSTEM-LEVEL

PERFORMANCE VISUALIZATION 68

6.1 Spreadsheet Visualization 68

6.2 Spreadsheet for System-Level Performance Visualization 69

6.3 Summary 73

CHAPTER 7. PUTTING IT ALL TOGETHER 74

7.1 URV System 74

7.1.1 URV Services 76

www.manaraa.com

vi

7.2 Case Study 78

7.2.1 Performance Scenario 78

7.2.2 Testbed 80

7.2.3 Problem Diagnosis Scenario 81

7.3 Summary 90

CHAPTER 8. RELATED WORK 92

8.1 Visualization Taxonomy 92

8.2 Automatic Visualization 93

8.3 Component-based Visualization 95

8.4 Performance Visualization 97

8.5 Performance Monitoring Tools 98

CHAPTER 9. CONCLUSIONS 102

9.1 Summary of Contributions 102

9.2 Future Work 105

APPENDIX. PERFORMANCE VISUALIZATION ONTOLOGY 108

BIBLIOGRAPHY 121

www.manaraa.com

vii

LIST OF FIGURES

Figure 1. Netlogger Visualization [76] supports system-level visualization which

is only based on temporal-based synchronization. It allows add more data, but the

view type is fixed 8

Figure 2. View and Visual Elements 14

Figure 3. Performance visualization with/without URV 16

Figure 5. GMA and URV Implementation 20

Figure 6. DAML representation of a class (Performance data) and sub class

(Performance Metric Data), and the example of BarChart visual design class 26

Figure 7. Visual Design class and Its properties 27

Figure 8. DAML representation of supportAnalysisType Property 28

Figure 9. RDF Triple model for What Supports Interaction Analysis Type 32

Figure 10. DAML representation of "What Visual Designs Support Interaction

Analysis Type" 34

Figure 12. Visualization Component 37

Figure 13. Knowledge of VC 41

Figure 14. Elements of Bar Chart visual design 43

Figure 15. Class hierarchy of graphical primitive 46

Figure 16. Graphical primitive class definition 48

Figure 18. Class hierarchy of visualization component 51

Figure 19. Visualization component class definition 53

Figure 20. Visualization component interfaces 54

Figure 21. Pseudo code of Visualization Component (VC) 55

Figure 22. Bar Chart VC creation 55

www.manaraa.com

viii

Figure 23. Component-level visualization composition 58

Figure 24. Graphical primitive level visualization composition 60

Figure 25. View-level visualization composition 61

Figure 27. VC1 (displays the occurrences of send events with markers over time) 63

Figure 28 VC2 (displays the occurrences of receive events with markers overtime) 64

Figure 29. VC3 (displays the status of processes with different colors

(yellow: idle, green: busy)) 64

Figure 30. A RDF-based query model of the composed knowledge 65

Figure 31. A new composite VC 66

Figure 32. System-Level Performance Visualization (SSPV) 71

Figure 33. RMC directory browser 72

Figure 34. Matched VC and its preview dialog 72

Figure 35. URV-based performance visualization system 75

Figure 36. Query service 77

Figure 37. Performance scenario testbed 81

Figure 38. Select a RMC that provides the process status information 83

Figure 39. Matched Gantt Chart component for process status 83

Figure 40. Gantt Chart components added to the worksheet 84

Figure 41. Merge two process status VCs by merge-union 85

Figure 42. Visualization of Send/Receive events 86

Figure 43. Space diagram visualization component 87

Figure 44. Visualization of CPU load information 88

Figure 45. Composed space-diagram with CPU load information 88

Figure 46. Observing correlation by aligning two VCs vertically on SSPV 89

Figure 47. Snapshot of Snap-Together [77]: Snaps multiple visual interfaces

www.manaraa.com

ix

(e.g., tree view, table view) to explore file hierarchies

Figure 48. Extension of SSPV

www.manaraa.com

X

LIST OF TABLES

Table 1. Cluster and Grid Performance Visualization (Representative Subset) 2

Table 2. Instances of Classes of Analysis, Resources, and Performance Data 28

Table 3. Selected Instances of Visual Design Class 31

Table 4. Effectiveness rankings of different perceptual encoding techniques

for three basic data types (Adapted from [70]) 44

Table 5. Preferred data type for each graphical primitive and its attribute 44

Table 6. Effectiveness rankings of graphical primitive for each data type 45

www.manaraa.com

xi

ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Diane Rover. Dr. Rover has been a great advisor

and significant influence in my life. I have learned so many things, including how to

conduct a research, how to write a paper, and the technical contents of performance

visualization. Her constant support and encouragement have been the most important

stimulus for me to get back on track when I feel frustration and hopefulness. I am truly

proud of being her student. Also, I thank my dissertation committee members, Dr. Daniel

Berleant, Dr. Yong Guan, Dr. Suraj Kothari, and Dr. Gupur Prabhu, for dedicated times

for review and many suggestions for improvements.

At last, I thank my family for consistent support. Most of all, I thank my beloved

wife, Seunghye Jang. Without her, simply this work would not exist. Her beautiful mind

and crystal clear soul have inspired me all the time. Thank you, sweetheart. I adore you.

www.manaraa.com

xii

ABSTRACT

Computing environments continue to increase in scale, heterogeneity, and hierarchy,

with resource usage varying dynamically during program execution. Computational and

data grids and distributed collaboration environments are examples. To understand

performance and gain insights into developing applications that efficiently use system

resources, performance visualization has proven useful. Performance visualization tools,

however, often are specific to a particular resource at a certain level of the system,

possibly with fixed views. Thus, they limit a user's ability to observe a performance

problem associated with multiple resources across system levels and platforms. To

address this limitation, information integration is necessary. In this research, we propose a

new performance visualization framework, Uniform Resource Visualization (URV),

focusing on integration of performance information into system-level visualizations. The

goal of URV research is to systemize the performance visualization of resources with

reusable and composable visualizations.

Keywords: performance visualization, visualization composition, knowledge

representation, component development, grid systems

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

This Chapter describes basic information on performance visualization, including a

selected list of well-known performance visualizations. Then, we discuss the motivation,

objectives, and contributions of the research,

1.1 Performance Visualization

A synopsis of software visualization for parallel/distributed computing is found in an

encyclopedia article by Rover [95]. One type of software visualization is program

visualization. Program structure and behavior may be elucidated through graphical

representation, allowing programmers to diagnose problems from a high to low level [95].

In addition to program visualization, performance visualization has extended and

enhanced users' understanding of the mapping of a program onto a computer. A

comprehensive article by Heath, Malony, and Rover [52] presented examples and

concepts of the visual display of performance data. Performance visualization

technologies/tools (e.g., [83][17][85]) support the development of visualizations.

Unfortunately, rapid and structured development of visualizations for parallel/distributed

systems has not been realized. Constructing meaningful and useful visualizations remains

an art, and system complexity seems to increase faster than tools can be developed and

visualizations created. While some tools (e.g., [51][74][71][126][119]) are flexible

enough to provide meaningful information across multiple systems, the construction of

custom visualizations remains difficult and expensive. To date, most visualization

systems have been designed based on a narrow set of requirements or for a specific

www.manaraa.com

context, little re-use of existing visual displays has been possible, and few well-

understood forms, abstractions, and concepts have been applied to constructing

visualizations.

Tables 1 summarizes a representative subset of performance metrics, tools, and

displays in use today for cluster/grid.

Table 1. Cluster and Grid Performance Visualization (Representative Subset)

Displays Possible Metrics Usage Examples Selected Tools

Bar chart

CPU load, TCP
bandwidth &
latency, memory
free & used, disk
size & used

Displaying a number of
retransmissions over time

Pablo [83], NetLogger
Visualization [76]

Line chart

CPU load, TCP
bandwidth &
latency, memory
free & used, disk
size & used

Displaying CPU load over
time

NetLogger
Visualization [76],
Vampir [117], TAU
[71], ParaGraph[51],
Pablo [83]

Pie chart
CPU system time,
user time

Displaying memory free,
used, cached, and swapped

Vampir [117]

Scatter plot
Memory size,
execution time

Displaying message size
versus message processing
time

Pablo

Kiviat
diagram

CPU load, process
load

Utilization of N processors TAU

Histogram
Message,
memory, I/O
metrics

Displaying a number of
messages, a number of
cache misses, and a number
of I/O accesses

Jumpshot [126]

Gantt chart Process status
Displaying states of N
processes, busy, idle,
overhead, over time

TAU, Vampir, Pablo,
Jumpshot, ParaGraph

Interaction
matrices

Network
bandwidth &
latency

For N processors, in NxN
matrix, interaction between
the pair represented by
color, shape, size or
intensity of each cell

Vampir, Pablo,
ParaGraph

Network
graph

Node status,
network
bandwidth

Displaying running status of
N nodes and their links to
each other

Pablo, ParaGraph,
Vampir

www.manaraa.com

3

Displays Possible Metrics Usage Examples Selected Tools

Execution
graph

Process status, call
status

Displaying communication
events among N processes
over time

Vampir, Jumpshot,
NetLogger
Visualization

Source
code

Source code
metrics

Highlighting loop nests and
procedure calls in a source
code

Pablo, SeeSoft [37],
SCALEA [113]

These tables highlight the similarities between tools and systems in the types of

displays and their usage. They, however, also underscore the needs identified above with

different tools being used for different resources and analyses, making it nearly

impossible to support wide-scale system visualization.

1.2 Motivation

Complex parallel and distributed systems must be tuned to achieve good performance.

By monitoring the behavior of resources, a system designer may identify bottlenecks and

non-optimal design solutions and then modify some aspect of the system's design to

improve performance. Visualization has been widely accepted as a means to deal with

large-scale data sets including dynamic and multivariate performance data. Many

visualization techniques have proven effective for understanding complex parallel

systems. The benefit of visualizations, however, is not limited to complex parallel

systems. Since grid [41] and web technologies are enabling distributed systems to be

interconnected, the complexity of their resource hierarchy and heterogeneity is being

increased substantially.

Most visualization techniques, however, have focused on specific types of

performance events at a certain level of the system. These techniques have been

developed in isolation to solve specific problems, with little consideration for the

www.manaraa.com

4

interactions and dependencies within the larger system. In contrast, a distributed

application in heterogeneous environments (such as grids) often is engaged with various

types of performance problems during its execution across multiple levels and platforms,

and often needs to be dynamically configured to accommodate newly available resources.

To illustrate the situation, consider a distributed collaborative virtual reality (VR)

application that concurrently executes on a SGI Onyx at ISU and a Linux cluster at

NASA. Both systems are connected by a high-speed vBNS network. Running the

application within a collaborative environment, scientists at both sites are sharing the

same virtual object of a space station; the object is being projected on the C6 CAVE at

ISU and on an Immersadesk at NASA. During this collaboration session, scientists are

trying to decide the best position of a solar panel, which is attached to the space station,

for its maximum exposure to the sun. Let us consider the following performance scenario.

As the ISU scientist moves the solar panel object to the top of the station cockpit object,

the scientist at NASA experiences an unexpected latency during rendering the movement

of the solar panel object. The latency might be caused by a particular rendering routine. In

this case, we can pinpoint the problem by monitoring a specific rendering process.

However, suppose the latency is associated with several causes; e.g., an unnecessary

retransmission caused by an inappropriate TCP buffer size results in a delay in rendering.

Monitoring a particular resource would not be enough. Instead, multiple sub-analyses

across resources and platforms should be conducted and integrated.

Monitoring such a distributed application is not trivial. It requires an extensible

monitoring architecture for accessing distributed performance data and system-level

visualizations for observing data correlation of multiple resources [41]. Several

monitoring frameworks have been developed to meet these requirements

[87][106][124][125]. Their visualizations, however, still rely on platform- and resource-

www.manaraa.com

5

specific tools that are not sharable. Performance visualization should adapt for the

complexity and heterogeneity of system, such that what is viewed and how it is viewed

are not constants. The visualization should be consistent, reusable, and composable to

support performance analysis associated with various resources across different

platforms.

This research is motivated by several limitations in current performance visualization

techniques: (1) they are limited to specific resources; (2) they are not sharable; and (3)

they do not support dynamic system-level visualizations.

1.3 Problem Statement

Performance visualization tools typically focus on specific resources or levels in the

system. In contrast, distributed applications are executing in grid environments having

greater heterogeneity and transience. New performance visualization technology is

needed that scales with system complexity, where what is viewed and how it is viewed

are not constants. To address this, we have developed a performance monitoring

framework called Uniform Resource Visualization (URV) [66]. URV addresses the

following needs in performance visualization for heterogeneous and distributed

environments:

Need for Standard Visualization Services: A complex computing system consists of

heterogeneous, coordinated resources, where resources are any logical or physical

elements that comprise the system. In a grid environment, a resource may be, for instance,

a network router or an application subroutine. Visualizing these resources and their

interactions from a system-level perspective requires a visualization and instrumentation

www.manaraa.com

6

that is uniform across different resources. The framework supports the integration of

information about different resources. Resource developers/vendors should be able to

provide custom visualizations of a resource, and these visualizations should be designed

consistently for interactions with other software components. Most performance

visualizations, however, have been developed in isolation, with little consideration for

interactions and dependencies within a larger framework. In particular, separately

developed visualizations often end up having completely different interfaces even though

they support the same interactions. Several visualization toolkits [2][56] provide uniform

interfaces to define interactions between sub-modules of a visualization. However,

uniform interfaces for interaction between a visualization and other components have not

been proposed. This research addresses the issue of standards to prescribe interfaces for

accessing and managing visualization components

Need for Sharing Visualization knowledge: It is not unusual that performance

visualizations from different domains have a lot in common (e.g., single metric-based

views or generalized views that can be customized to different system levels).

Unfortunately, their crucial design features are more likely to have been reinvented than

reused from one another. Consequently, there is a need to reuse both knowledge about

visualization and specific visualizations (i.e., software components). A visualization

developer/user should be able to search for a visualization that meets the needs of an

analysis problem. In the information visualization area, visualization taxonomies have

been developed [70][98][91][105]. Such taxonomies help visualization developers

organize the design features according to the data domain of interest. It is difficult to

document a software component in unambiguous, and classifiable terms; a description of

a component must be translated into a concrete specification. A specification and

www.manaraa.com

7

indexing scheme must be applied to classify the features and guide the search for

components. This research addresses the issue of reuse with an ontology-based approach

that will provide the capability to search for visualization components and find matches

according to the classification.

Need for Visualization Composition: A system-level visualization should present

data correlation between multiple resources. The simplest way to construct a system-level

visualization is to aggregate individual visualizations from each resource, placing them

side-by-side in a window. This simple method suffers two problems. First, the separate

visualizations may not be synchronized, which may cause users to draw incorrect

correlative inferences about the performance of the system. Second, any performance

information that is a function of the performance of multiple resources in cooperation will

not be directly visible. The first problem concerns the need for spatial/temporal

synchronization among separate visualizations. The second problem concerns the need

for abstraction and layering in a visualization. These two problems are fundamental

obstacles to the design of a system-level visualization. Several performance visualization

tools [103] [76] support system-level visualization based on temporal synchronization. For

instance, as shown in Figure 1, Netlogger visualization [76] allows visualizing multiple

performance data in a single view. Their system-level views, however, are limited to

simple aggregation of predefined views (e.g., line chart). Such system-level views are not

effective to provide meaningful observation if a number of aggregated views grows big;

users suffers from too many individual views, which could require additional analysis on

the views themselves. A system-level view needs to be in a concise form.

www.manaraa.com

8

To monitor complex computing systems, dynamic creation of integration of

performance information is necessary. This research addresses information integration

issues associated with system-level views.

Net Lugger

Figure 1. Netlogger Visualization [76] supports system-level visualization which is only
based on temporal-based synchronization. It allows add more data, but the view type is

fixed.

Need for New Visualization Technology: The problems of uniformity and

reusability can be partially addressed with an appropriate software engineering approach

to the visualization system. That solution, however, will fall short without a structured

approach to visualization creation and the ability to share visualization knowledge.

Capturing visualization knowledge is a hard problem with limited coverage thus far in the

research community. The problem of composition is not merely one of software

engineering, yet composition is the key to system-level visualization. Visualization

composition is a real challenge, in part because it requires integration at several levels of

www.manaraa.com

9

information, including visualization design. The research community has only begun to

leverage new software technologies for advanced visualization systems. The concepts

Thesis Statement Performance visualization in heterogeneous and distributed systems

should be supported by standard visualization service, sharable visualization

knowledge, and system-level views. Component technology can be applied in a novel

manner for creating new performance visualizations. In particular, uniform interfaces

are a means to access and manipulate visualizations consistently. In addition, a

representation of visualization knowledge supports reuse of visualizations. Finally,

information integration into new system-level views is based on composition of

visualization components.

behind visualization design are mature enough to build them into new visualization

systems, so that users can focus on "what" they want to see, not "how" to see it.

The central research issues addressed in this research emphasize the need for

uniformity, reusability, and composition in performance visualization systems. This

research demonstrates new performance visualization technology applied to a complex

computing system.

1.4 Objectives

The objectives of this dissertation research are summarized as follows:

www.manaraa.com

10

• To reuse visualization components: One objective is to define visualization

components so that they are reusable. The key is to provide a methodology for

systematic creation of visualization components. In part, interfaces for their access

and manipulation need to be uniformly defined, including methods, parameters, and

an interaction protocol. The interface definitions need to support a wide range of

performance visualization situations.

• To represent performance visualization knowledge: This research should

describe performance visualization knowledge so that it is sharable. To do this,

current visualization representations associated with data-model based taxonomies

should be extended to accommodate visualization knowledge.

• To create system-level visualizations dynamically: The ultimate objective of

this research is to provide a systematic methodology for integrating information into

system-level visualizations. To do this, visualization components need to be

compatible both syntactically and semantically. Visualization components can be used

in multiple visualizations without losing its syntactic and semantic meaning. Likewise,

a new visualization that inherits knowledge of multiple visualizations can be created.

This research should provide the principles and methods for integrating performance

views.

1.5 Contributions

The contributions of this research take three forms: new or enhanced qualities of

performance visualization, new methodology, and new software.

www.manaraa.com

11

A. Qualities of a performance visualization

1. This research extends current visualization representation techniques to

the field of performance visualization. This work provides a way of representing

performance visualization based on its knowledge, which improves reusability of

visualizations.

B. Visualization methodology

2. This work creates a methodology for designing reusable visualization

components. This methodology addresses the heterogeneity in creation of

visualization components. A visualization component which is created based on

the methodology is able to be consistently accessed and integrated into the

visualization system.

3. This work provides a methodology for creating system-level views by

composition. The principles and methods of composition are provided. It also

includes a new spreadsheet-based approach to provide a structured way of

applying composition operation to multiple performance views

C. Visualization software

1. This research presents a spreadsheet-based performance visualization tool.

The spreadsheet-based performance visualization tool provides a structured way

of observing, exploring, understanding, and managing performance problems.

2. This research presents a performance visualization framework. The

framework consists of the implementations of visualization methodologies, which

provide users with software modules to help create a performance visualization

system in a consistent way.

www.manaraa.com

12

1.6 Organization of Dissertation

The following dissertation is organized as follows. Chapter 2 describes a visualization

model of URV, which presents basic elements of a performance visualization. In Chapter

3, the representation of visualization knowledge is described. This knowledge

representation supports systematic searching of visualization components for specific

goals. We address this issue in Chapter 4 by providing a visualization component creation

methodology. Visualization component, which is one of the elements, is the main focus of

this research. How to develop a consistent and reusable visualization component is an

very important issue for system-level visualization. The methodology consists of several

systematic steps which lead to reusable visualization component development. Chapter 5

defines the composition methodology for creating a system-level view. We present

different types of visualization composition and based on them, we provide different

strategies of composition. Chapter 6 presents a new spreadsheet-based visualization tool

that we designed for facilitating creation and composition of visualization components.

Chapter 7 presents a performance visualization system, which consists of services

implementing the visualization methodologies, and a case study that demonstrates our

methodologies. Chapter 8 provides some related works that have influenced this research.

Chapter 9 then concludes the dissertation by summarizing research contributions and

future work.

www.manaraa.com

13

CHAPTER 2. VISUALIZATION MODEL

In this Chapter, we describe our visualization model. The model defines the elements

of a performance visualization, and their behaviors and interactions. The creation of

performance visualization is a process of defining the scope and behavior of each element,

and interactions among them.

2.1 View

A view is a visual representation of information. In particular, a performance view

shows performance information such as hardware performance and computation

behaviors. It is used to evaluate performance, verify correctness, diagnose problems, and

gain insight into structure and execution behavior. The performance view consists of the

following elements:

• Data (D): A data specifies information to be visualized. Three most commonly

used data types are quantitative, ordinal, and nominal [70]. Nominal data types are

assemblages of symbolic names, typically unordered. For example, the names of the

explorers, such as Gallileo, Columbus, Magellan, etc., form a nominal data set.

Ordinal data types are rank ordered only. The ordering of the data does not reflect the

magnitudes of the differences. A typical example of an ordinal date set is the names of

the calendar month, January through December. Quantitative data present real

numbers

www.manaraa.com

14

• Graphical Primitive (GP): A graphical primitive is a computer generated visual

entity, such as a line, dot, bar, and circle. It specifies how to map data to graphical

primitive [70].

• Visual Design (VD): Visual design presents the structure and relationships within

a data set in an effective format [70]. It describes how to structure and layout visual

elements. Bar chart design and matrix view design are examples.

• View (V): A view consists of multiple visual elements with a visual design.

• Visual Element (VE): A visual element is a graphical primitive or view that

presents data.

Visual Design

<^»

A group of Visual

Elements (VE)

VEs

View (V)

VEs

&

Visual Design

(VP)

View (V)

Figure 2. View and Visual Elements

Using the elements, we can establish the following relationship between elements:

• VE = VE VE | GP + D | V | e

• V = VE + VD | s

• VD = matrix view design | bar chart design | ...

• GP = Line | Bar | Dot | Circle ...

• D = quantitive data | ordinal data | nomial data

www.manaraa.com

15

The view itself can be a visual element that can be one of elements of another view.

Figure 2 depicts a view and its relationship with visual elements and visual designs.

2.2 Uniform Resource Visualization (URV)

Uniform Resource Visualization (URV) is a new visualization framework, focusing

on integration of performance information into system-level visualizations. As depicted in

Figure 3(a), typical performance visualization environments are based on a one-to-one

relationship between instrumentation and visualization. That is, there is often a single

source or format of performance data prescribed for a particular visualization. Although

there are exceptions, e.g., the model of Pablo [83], a user typically sees a graphical

display that came packaged with the instrumentation. This is the case even with a many-

to-one relationship, in which a basic graphical display type is paired with all performance

data (as in Paradyn [74]). The availability of new performance data often means that new

visualizations will need to be programmed specifically for that tool environment. There is

little chance that a visualization can be used with another tool, even though many of its

attributes would satisfy the end-user needs.

The main goal of URV is to extend the usability of visualization by providing a many-

to-many relationship between instrumentation and visualization. The many-to-many

relationship supports the special cases of one-to-many and many-to-one relationships. In

case of a one-to-many relationship, a single source of performance data can be viewed in

several ways. This lets a user choose a perceptually effective visualization. On the other

hand, a many-to-one matching enables a single visualization to be reused across several

sources of performance data. For instance, a line chart can display CPU load over time,

www.manaraa.com

16

round-trip message time over time, etc. In addition, since performance views in URV are

created in a uniform and consistent way, the views have syntactic and semantic

compatibility with each other. A graphical representation in one performance view can be

reused in a second view without losing its syntactic representation and semantic meaning.

This feature enables the integration of performance views, whereby a new visualization is

created by composing multiple visualizations.

New
Instrumentation

Visualization
Not

available

URV

a) Without URV b) With URV

Figure 3. Performance visualization with/without URV

2.3 Performance Visualization in URV

A performance visualization in this research consists of a resource part and a

visualization part [64], as illustrated in Figure 4. The resource part of the visualization

consists of a Resource and a Resource-Monitoring Component (RMC). A resource is a

source of performance monitoring. It may be a physical entity (e.g., CPU, Network link,

log file) or a logical entity (e.g., process).

An RMC provides instrumentation, data collection, and interaction with consumers of

performance data. It separates visualization from resource. There are two types of

www.manaraa.com

17

performance data collected by RMC: metric data and event data. The metric data presents

the status, throughput, and usage of resources. On the other hand, the event data presents

a series of changes/happenings during resource running/execution (e.g., send & receive

events during data transmission). Both types of data consist of timestamp, the name of

metric/event, and quantity value (e.g., Utilization % value). The quantity value can be

The semantics of an RMC (i.e., what RMC measures

or/and monitors) can be represented with a Performance data

type (P), a Resource type (R), and a target Node (N):

RMC is one of {<n,r, p> \ n is a set of node IPs, r is a

subset of R, p is a subset of P, where R is a total set of

resource types, Pis a total set of performance data types}

A single RMC <n, r, p>

For instance, suppose there is a RMQ that monitors a

CPU load of the node (123.121.133.98). Then, this RMQ can be represented as:

RMQ <{123.121.133.98}, {CPU}, {Load}>

In URV, we assume that all RMCs are unique; there are no two RMCs that collect the

same performance data of the same resource at the same node. In addition, we have

restricted resource and performance data types to the most commonly used ones. The

detailed list is described in Chapter 3.

optional for event data.

.-Resource /

Resource:
Monitoring
Component

fl • • • 'n

Monitoring
Controller

Vj v2 . . . v„

J I L
Visualization
Component

Figure 4. URV View

www.manaraa.com

18

The visualization part is termed a visualization component (VC). A VC is a software

component implementation of a View (V). In addition, the VC also contains information

about Analysis type (A). An analysis type specifies the purpose/usage of visualization.

For instance, one visualization is very useful for data trending analysis while the other

visualization for observing interactions.

The semantics of VC can be represented with A and VD:

VC is one of {<a, vd> | a is a subset of A, vd is a subset of VD, where A is a total set

of analysis types, VD is a total set of visual designs}

VC <a, vd>

For instance, a VQ, which implements a barchart view and supports observing the

status of resource, can be represented as:

VCj -> <{status}, {BarChartView}>

Likewise, a VCj, which implements a network view and supports status & interaction

monitoring:

VCj <{status, interaction}, {NetworkView}>

Based on the definitions of RMC and VC, a URV view can be further defined by

coupling RMC with VC:

Performance Visualization «-> RMC + VC

<n, r, p> + <a, vd>

<-> <n, r, p, a, vd>

www.manaraa.com

19

For instance, a performance visualization, which visualizes the status of CPU load at

the node, 123.121.133.98 using a Bare hart view, is represented as:

URV View -> {<{123.121.133.98}, {CPU}, {Load}, {Status}, {BarChartView}>}

A monitoring controller defines component interaction via a set of services that are

provided by one component and required by another component. Each component (RMC,

VC) specifies services comprised in its interface to other components, e.g., rj r2 . . . r„

and vj V2 ... v„ in Figure 4. Accessing components via the interfaces, the monitoring

controller controls performance visualization. It could be a user customized program

which controls monitoring. For instance, a GUI console that hosts instrumentation and

performance visualization is a good example.

In order to create RMC, we can convert existing tools or software modules. For

instance, network monitoring sensors in NWS [124] and monitoring tools in NetLogger

[108] can be wrapped to create RMCs. In the meantime, this research does not address

methodology of RMC creation. Instead, the research focuses on VC.

URV views can be implemented by mapping onto existing software architectures,

e.g., the Grid Monitoring Architecture (GMA) [109] depicted in Figure 5(a). As depicted

in Figure 5(b), an RMC and a VC in URV correspond to a producer and a consumer in

GMA, respectively, in the sense that the VC consumes performance information that the

RMC produces. Besides, a GMA-based monitoring tool could apply selected URV

components, such as a specific VC for visualization.

www.manaraa.com

20

Register Register

Subscribe
Subscribe

Search
retrieve Search

retrieve

Producer
RMC

URV service Consumer

RMC
Directory Directory

Visualization
Component

(a) GMA (b) URV Implementation of GMA

Figure 5. GMA and URV Implementation

2.4 Summary

This Chapter provided basic information about performance visualization. We first

described the different aspects of a performance view, including a data, graphical

primitive, visual design, and visual element. Based on the basic information, we have

further defined a performance visualization model, which defines the elements and their

interactions of performance visualization. The elements include resource, resource

monitoring component, visualization component, and monitoring controller. In this

Chapter, we formalized the representation of each element, which is used in the rest of

thesis. The proposed visualization model can be easily mapped to existing

consumer/provider based monitoring architecture.

www.manaraa.com

21

CHAPTER 3. PERFORMANCE VISUALIZATION KNOWLEDGE

This Chapter describes a representation of performance visualization knowledge. The

knowledge representation is machine-interpretable, which allows software agents to

conduct a query-answer process. The visualization knowledge is a key deliverable to

improve reusability of visualizations.

3.1 Performance Visualization Knowledge (PVK)

Two approaches are commonly used toward reusable visualization in the area of

information visualization: visualization taxonomy and automatic visualization.

Researchers have constructed taxonomies of visualization techniques by examining the

data domains that are compatible with the techniques [21][101][114]. The taxonomies

help developers quickly identify various techniques that can be applied to the domains of

interest. The taxonomy approach provides a basis to identify relevant visual design

content, however, applying and implementing a technique is left to the developer.

Automatic visualization methods [17] [26] help developers create a view by suggesting an

intermediate view based on predefined design principles at each stage of the visualization

process. Tuning of the intermediate view eventually leads to a final view. This technique

narrows the design space and has proven useful for non-visualization experts.

This research attempts to reuse visualization based on its knowledge. Knowledge

denotes the fact of knowing something with familiarity gained through experience or

learning. Knowledge of visualization describes which goals work best with a visualization

[47]. In particular, knowledge of a performance visualization knowledge, termed

www.manaraa.com

22

Performance Visualization Knowledge (PVK), represents 'what types of performance

monitoring situations have been well matched with a certain visual design'. In URV,

PVK presents the properties of performance information that are well matched with a

specific visual design. In particular, PVK presents the following information:

• What resources (R) can be best visualized by VC?

• What types of performance event (or/and) metric data (P) of the resource(s) can be

best visualized by VC?

• What types of analysis (A) does VC support?

For convenience, we can represent a single PVK as a combination of those

information: (A, R, P), where A is a set of analysis types, R is a set of resource types, and

Pis a set of performance data types.

Reuse of visual design implies that, using the same design, we are guaranteed to

create multiple views that have the same syntactic graphical presentation and perceptual

understanding. Furthermore, reusing the same visualization knowledge guarantee the

same semantic content.

Describing PVK is one of main goals to support reusability of visualization. The

description of visual design and visualization knowledge must meet the following

requirements:

• Versatility: A description should represent a group of multiple views based on

syntactically compatible visual designs. Creating multiple instances from a single

description reduces the number of descriptions that must be maintained.

• Extensibility: A description should allow the addition of new content.

www.manaraa.com

23

• Hierarchy: A description must support a hierarchical representation.

3.2 Performance Visualization Ontology (PVO)

In order to meet the requirements defined previously, we have exploited an ontology-

based approach. Ontology defines a common terminology for users who need to share

certain information in a domain. It contains the definitions of basic concepts in the

domain and relations among them [78]. Ontology provides a consistent way of sharing

domain specific knowledge, which leads to reuse of well-recognized solutions.

The Performance Visualization Ontology (PVO) is a collection of Performance

Visualization Knowledge (PVK)s. It describes which visual design works best with which

monitoring goals, which combinations of visual design provide the most effective

performance view.

There is no single correct way to develop ontology for a domain. Depending on a

specific usage of ontology, it is possible to have multiple ontologies, which model the

same domain. In general, ontology development is necessarily an iterative process [78].

In this research, we model the performance visualization domain, focusing on the

characteristics of performance monitoring scenarios and the corresponding visual designs.

There could be virtually unlimited performance monitoring problems and visual

designs to be modeled. It is not desirable to model them individually, which leads to

unnecessary complexity in ontology. Instead, we have restricted the scope of domain to

the most commonly used monitoring situations and visual designs in high-performance

distributed computing environments. For instance, the monitoring related terminologies in

PVO were borrowed from several on-going standards in the performance monitoring

community, such as [84] and [109]. Since one terminology might be used in a different

www.manaraa.com

24

way in the other areas, we assume that users of PVO are familiar with the terms and their

meanings in the area of high-performance distributed computing.

3.3 PVO Representation

To represent the PVO, we use a Resource Description Framework (RDF)-based

ontology representation, such as Darpa Agent Markup Language (DAML) [31]. DAML

provides plentiful constructs to create ontology and to markup information so that it is

machine readable and understandable. In DAML, we represent a basic knowledge model

with a combination of classes (conceptualization), a class hierarchy, properties of class,

and instances. Thus, building a knowledge model with DAML is essentially a process of

defining classes, building a class hierarchy, defining properties, and creating instances. In

this research, we focus on the systematic mechanism of representing and utilizing

visualization knowledge rather than the completeness of knowledge modeling.

3.3.1 Class and Class Hierarchy

A class is a main concept in a domain. A class can have sub classes that represent

more specific concepts than a class (See Figure 6). For instance, a class of performance

data represents all performance data. A class of performance metric data is a sub class of

performance data, which represents all number-based metric data. Further, a load could

be an instance of performance metric class. All sub classes and instances inherit the

properties of super class. All classes, sub classes, and their hierarchies in PVO are as

follows:

www.manaraa.com

25

• ANALYSIS_TYPE class: represents the types of analysis that can be conducted

by performance visualizations. For instance, one visualization is very useful to

observe a trend while another visualization is useful to observe interaction between

resources.

• RESOURCE class: represents target resources to be monitored.

• PERFORMANCE_DATA class: represents performance data associated with a

target resource.

o PERFORMANCE_EVENT_DATA class: represents performance event

data. E.g., send event, receive event

o PERFORMANCE_METRIC_DATA class: represents performance metric

data. E.g., load, utilization

• VISUAL_DESIGN class: represents selected visual designs

o BAR_CHART_DESIGN class: represents bar chart designs that show

quantitative values

o LINE_CHART_DESIGN class: represents line chart designs which show

quantitative values

o PIE_CHART_DESIGN class: represents pie chart designs which show the

contribution of each performance data with different pie sizes

o SCATTER_PLOT_DESIGN class: represents scatter plot designs which

show the correlation between pairs of performance data

o GANTT_CHART_DESIGN class: represents gantt chart designs which

show the progress of event(s) over time

o SPACE_TIME_DIAGRAM_DESIGN class: represents space time

diagram designs that shows the progress of event(s) and interaction

between events over time

www.manaraa.com

26

o MARTRIX_VIEW_DESIGN class: represents interaction matrix chart

designs that show interaction between the associated pairs

o NETWORK_VIEW_DESIGN class: represents network graph designs that

show structure and relationship between objects

</-- Class Definition —>

<daml: Class rdf: about=#PERFORMANCE_DATA>

<rdf s :label>PERFORMANCE_DATA</rdfs :label>

</daml:Class>

<daml: Class rdf:about=#PERFORMANCE_METRIC_DATA>

<rdf s :label>PERFORMANCE_METRIC_DATA</rdfs : label>

</— Sub class definition —>

<rdfs :subClassOf>

<daml:Class rdf:about=#PERFORMANCE_DATA/>

</rdfs :subClassCf>

</daml:Class>

</-- Example: Bar chart design class -->

<daml: Class rdf:about="#BAR_CHART_DESIGN">

<rdfs :label>BAR_CHART_DESIGN</rdfs :label>

<rdfs :subClassOf>

<7— Bar chart design is a sub class Of VISVAL_DESIGN

class -->

<daml: Class rdf: about="#VISUAL_DESIGN" / >

</rdfs :subClassOf>

Figure 6. DAML representation of a class (Performance data) and sub class (Performance
Metric Data), and the example of BarChart visual design class

3.3.2 Properties

Properties in ontology provide more information about classes. In particular, in PVO,

we focus on detailing a visual design class for matching a visual design to right

www.manaraa.com

27

monitoring situation(s). For instance, which analysis types are supported by a particular

visual design? Which resources can be visualized with the visual design? , etc. We have

defined the following three properties:

• supportAnalysisType: represents which analysis types are supported by the visual

design

• supportPerformanceData: represents which performance data types are supported by

the visual design

• supportResource: represents which resource types are supported by the visual design

Figure 7 shows the properties of the visual design class and relationships with other

classes. In addition, Figure 8 shows the DAML representation of property definition.

ANALYSIS TYPE RESOURCE

supportAnalysisType^ / \supportPerformanceData

supporfResource

[PERFORMANCE DATA

Figure 7. Visual Design class and Its properties

www.manaraa.com

28

</— Definition -->

<daml:ObjectProperty rdf:about=#supportAnalysisType>

<rdfs :label>supportAnalysisType</rdfs :label>

<rdfs:range>

A target range of property —>

<daml: Class rdf:about=#ANALYSIS_TYPE/>

</rdfs:range>

</daml: Obj ectProperty>

Figure 8. DAML representation of supportAnalysisType Property

3.3.3 Instances

This section describes instances of each class. An instance presents a specific case of

a class. It establishes a "is-a" relation with a class; an instance is a type of class. In

addition, instances inherit the properties of the parent class. Our list of instances does not

necessarily to present every possible instance of each class. Instead, it focuses on the most

commonly used ones in the area of performance monitoring.

Table 2 summarizes the instances of ANALYSIS_TYPE, RESOURCE, and

PERFORMANCE_DATA. Based on these instances, we then present the instances of

visual design, which correspond to several well-recognized performance visualization

usages in high-performance and distributed computing.

Table 2. Instances of Classes of Analysis, Resources, and Performance Data

Class Sub class Instance Note

ANALYSIS_TYPE Trend Observes data trending

Observes status of

Status resources, (e.g., process

status: running, idle)

www.manaraa.com

29

Class Sub class Instance Note

Relationship

Observes relation between

performance data (e.g.,

correlation)

Comparison Compares performance data

Structure

Observes the structure of

resources, (e.g., network

hierarchy)

Interaction

Observes interaction

between pairs of resources

(e.g., communication

between processes)

Contribution
Observes contribution of

each performance data

RESOURCE

Process Process

RESOURCE

Processor CPU

RESOURCE
Memory Storage

RESOURCE
Disk Storage

RESOURCE

Link Network link

RESOURCE

Software Application

PERFORMANCE_DA

TA

PERFORMANCE_E

VENT_DATA

Send Send event (e.g., data sent) PERFORMANCE_DA

TA

PERFORMANCE_E

VENT_DATA

Receive Receive event

PERFORMANCE_DA

TA

PERFORMANCE_E

VENT_DATA

Start

Start

processing/running/executin

g

PERFORMANCE_DA

TA

PERFORMANCE_E

VENT_DATA

Stop Stop

PERFORMANCE_DA

TA

PERFORMANCE_E

VENT_DATA Ack Acknowledgement

PERFORMANCE_DA

TA

Read Read data block(s)

PERFORMANCE_DA

TA

Write Write data blocks(s)

PERFORMANCE_DA

TA

Idle Idle

PERFORMANCE_DA

TA

Busy
Busy event (e.g., a process

is computing)

PERFORM AN CE_M Available e.g., available memory

ETRIC_DATA Utilization e.g., processor utilization

Bandwidth e.g., network bandwidth

Load e.g., processor load

Latency
e.g., network latency (round

trip time)

www.manaraa.com

30

Class Sub class Instance Note

PacketLoss e.g., network packet loss

NumberOfHops
e.g., a number of hops

between two hosts

Size e.g., disk size

Used e.g., memory used

Note that resources such as processor and memory are instances of the

RESOURCE class instead of sub classes. It implies that PVO considers their all variations

as the same instance. For instance, a visualization for AMD64 processor utilization is not

necessarily different from the one for Intel processor utilization.

Each instance of VISUAL_DESIGN class presents a specific usage of visual design in

performance monitoring. Table 3 shows the selected instances of visual design, each of

which specializes its parent class with target instances (in Table 2) of the properties.

www.manaraa.com

Table 3. Selected Instances of Visual Design Class

Class Sub Class Instance Property Visualization

BAR_CHART_DESIGN BarChart_l
supportResource: Link

supportPerformanceData: Bandwidth

supportAnalysisType: Trend

A bar chart that observes
link bandwidths over time

VISUAL,
DESIGN

LINE_CHART_DESIGN LineChart_l
supportResource: Processor
supportPerformanceData: Load
supportAnalysisType: Trend

A line chart that observes
processor loads over time

VISUAL,
DESIGN

PIE_CHART_DESIGN PieChart_l
supportResource: Memory

supportPerformanceData: Available

supportAnalysisType: Contribution

A pie chart that shows how
much memory is available vs.
not available

VISUAL,
DESIGN

SCATTER_PLOT_DESIGN ScatterPlot_l
supportResource: Processor, Memory

supportPerformanceData: Load, Available

supportAnalysisType: Relationship

A scatter plot that shows
correlation between processor
load and memory usage

VISUAL,
DESIGN

GANTT_CHART_DESIGN GanttChart_l
supportResource: Process
supportPerformanceData: Busy, Idle
supportAnalysisType: Status

A gantt chart that shows process
status (busy, idle) over time

VISUAL,
DESIGN

SPACE_TIME_DIAGRAM DE
SIGN

SpaceTime
Diagram_2

supportResource: Process
supportPerformanceData: Send, Receive,
Busy, Idle

supportAnalysisType: Status, Interaction

A space time diagram that shows
status of multiple processes and
communication between them

VISUAL,
DESIGN

MATRIX_VIEW_DESIGN MatrixViewl
supportResource: Link
supportPerformanceData: Bandwidth
supportAnalysisType: Interaction

A matrix view that shows
bandwidths between pairs of links

VISUAL,
DESIGN

NET W ORK_VIE W_DESIGN NetworkView_l

supportResource: Link, Processor
supportPerformanceData: Bandwidth

supportAnalysisType: Structure, Status

A network graph that shows
distributed nodes. Each node
in a view presents the existence
of processor. Colors of edges
in a view present link bandwidth

www.manaraa.com

32

3.4 Ontology Query

PVO, once represented in DAML, can be queried using the DAML Query Language

(DQL) [30]. DQL is a formal language and protocol for software agents to perform a

query-answering process with knowledge represented in DAML. A DQL query

necessarily includes:

• A query pattern that is a collection of DAML sentences in which some of

the literals or/and Uniform Resource Identifiers references (URIrefs) have been

replaced by variables.

• An answer Knowledge Base (KB) pattern that is a KB reference, a list of

KB references, or a variable

• A must-bind variables list and a may-bind variables list. Answers are

required to providing bindings for all must-bind variables, may provide bindings for

may-bind variables

supportAnalysisType Interaction

Figure 9. RDF Triple model for What Supports Interaction Analysis Type

In essence, a query-answering of ontology is a process of reasoning and matching

given variables to the right class(es) or/and instance(s) in the ontology. To represent a

query, for example, "What visual designs do support an interaction analysis type? ", first

www.manaraa.com

we create an intermediate form of the query in a RDF triple model. Figure 9 shows the

RDF model of the query. ?x presents a must-bind variable and tkb, target knowledge base.

In addition, its DAML representation is shown in Figure 10. Figure 11 shows the sample

query result of "what visual designs does support interaction analysis type?".

3.5 Summary

This Chapter provided the definition and principles of performance visualization

knowledge. The performance visualization knowledge presents 'what types of resources,

performance data type, and/or analysis type have been well presented with a certain visual

design'. We presented an ontology-based knowledge representation, which results in

Performance Visualization Ontology (PVO). PVO defines the concepts (classes) and

properties of performance visualization that are basis in categorizing performance

visualization based on the knowledge. The PVO is a key item that supports reusability

and composition of visualization. With the PVO, users can obtain well-recognized visual

designs for observing a particular performance problem. Users do not need to reinvent a

new visual design unless a target problem domain is completely unrelated with ones

denoted in the PVO. This Chapter also presented PVO in a RDF-based knowledge

representation language, such as DAML. By representing with DAML, we are able to

access and manipulate PVO systematically, which leads to automatic visualization

creation. In addition, this Chapter showed how to query PVO to search proper

visualizations to meet user goals.

www.manaraa.com

34

</— NAMESPACES —>
<dql-ql: query

xmlns:dql-ql="http://www.w3.org/2003/10/dql-ql-syntax#"

xmlns:var="http://www.w3.org/2003/10/dql-ql-variables#"

xmlns:iw="http://www.ksl.Stanford.edu/software/IW/spec/iw.dam

1#"

xmlns:tkb="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:dql="http://www.w3.org/2002/07/dql#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#">

</— Query (X? supports interaction analysis type) —>
<dql-ql:queryPattern>

<rdf:RDF>

<rdf: Description rdf:about=#supportAnalysisType>

<var:x rdf:resource=#Interaction/>

</rdf:Description>

</rdf:RDF>

</dql-ql:queryPattern>

<!— MUST-BIND VARIABLE —>
<dql-ql:mustBindVars>

<var:x/>

</dql-ql :mustBindVars>

<1— ANSWER PATTERN —>
<dql-ql:answerKBPattern>

<dql-ql:kbRef

rdf: resource="http://www.vrac.iastate.edu/-leekukji/pvo.daml"

/>

</dql-ql:answerKBPattern>

</dql-ql:query>

Figure 10. DAML representation of "What Visual Designs Support Interaction Analysis
Type"

http://www.w3.org/2003/10/dql-ql-syntax%23
http://www.w3.org/2003/10/dql-ql-variables%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23
http://www.w3.org/2002/07/dql%23
http://www.daml.org/2001/03/daml+oil%23
http://www.vrac.iastate.edu/-leekukji/pvo.daml

www.manaraa.com

35

<owl-ql:answerBundle xmlns:owl-ql="http://www.w3.org/2003 /10/ow'l-ql-

syntax#"

</— Namespace -->

xmlns: var="http://www.w3.org/2003/10/owl-ql-variables#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

</— The variable x is bound with MATRIX_VIEW_DESIGN —>

<owl-ql:answer>

<owl-ql:binding-set>

<var:x

rdf: resource^"http://www.vrac.iastate.edu/-leekukj i/pvo.daml#MATRIX_V

IEW_DESIGN"/>

</owl-ql:binding-set»

</— ANSWER —>

<owl-ql:answerPatternInstance>

<rdf: RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#">

<rdf description

rdf:about="http://www.vrac.iastate.edu/~leekukji/pvo,daml#Inter

action">

</— HATRIX_VXEW_DESIGN supportAnalysis Interaction —>

<tkb:supportAnalysis

xmlns:tkb="http://www.vrac.iastate.edu/-leekukji/pvo.daml#"

rdf:resource="http://www.vrac.iastate.edu/~leekukj i/pvo.daml#MA

TRIX_VIEW_DESIGN" />

</rdf: Description»

</rdf:RDF>

</owl-ql:answerPattern!nstance>

</owl-ql:answer>

<owl-ql: continuation»

<owl-ql: termination-token»

<owl-ql:end/>

</owl-ql: termination-token»

</owl-ql: continuation»

Figure 11. DAML representation of the Answer of "What visual design does
support interaction analysis type"

http://www.w3.org/2003/10/owl-ql-variables%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23

www.manaraa.com

36

CHAPTER 4. VISUALIZATION COMPONENT

This Chapter provides more details about how to create a visualization component

(VC). It is important that a VC design is consistent and systematic for its reusability; a

VC should keep its syntactic and semantic meanings when integrated into another VC.

First, we present different aspects of VC that we need to consider in designing a new VC.

We then present a creation methodology which consists of several steps, each of which is

a process of defining each aspect of the VC.

4.1 Visualization Component (VC)

A Visualization Component (VC) is a component implementation of a view that

displays visual elements based on a visual design (Figure 12). A visual element could be

any graphical primitive (e.g., line, bar) which visually encodes a single data or a complete

view that displays a whole data set. It is important that the interfaces of VC should be

well defined in a way that supports unform access and manipulation.

www.manaraa.com

37

Interfaces

• • >
• •••

Visual
Element (VE)

• •••
• •••

View (V) Visualization
Component (VC)

Figure 12. Visualization Component

The design of VC should address the following issues:

• Modularity: VC should be fully manageable without any dependency to

other software modules

• Componenentization: End user of VC should not be aware of its detail

implementation

• Hierarchy: VC can contain other sub VCs.

• Composability: VC, once desinged and created, can be resued to create

Descriptors, in general, allow a designer to specify the interfaces to components

rigorously and to specify component interconnection at these interfaces. An ideal

description of a component encompasses the component's concept, content, and context

[111]. Concept is a description of what the component does, including its interface and

any operating specifications. Content describes how the concept is realized or

implemented so that users of the component can modify or adapt it to a specific use.

other VCs

www.manaraa.com

38

Finally, context describes the domain of applicability of the component. For instance, the

attributes of interface and component identification (e.g., location, execution platform)

describe the component's concept, and the information about how to initiate, access, and

interact, its content. The properties of applicable problem domains denote the

component's context.

To represent components uniformly, we provides a specification for describing each

concept, content, and context of a component. A specification helps developers to

develop consistent interfacing mechanism for accessing, viewing, and managing

heterogeneous components. Incorporating the component descriptions of current

component technologies [27], we have developed VC-specific specifications. For

instance, we are capturing information about interfaces of off-the-shelf visualizations:

what the most commonly used interface types are, what their parameters are, and what the

common control events are. When someone develops and describes a component, he or

she needs to follow the given description in order to make the component uniformly

identifiable. With this approach, components may be specified uniformly and be

accessible consistently. In the following methodology section, we describe our

component specifications in part of VC creation.

4.2 Methodology for Creating Visualization Component

One of the main goals of our efforts is to create a structured design methodology that

could be used to create a visualization component. It is important that the visualization

component which is developed based on the methodology should be resuable and

integratable in URV-based systems. Also the methodology needs to be easily

implemented.

www.manaraa.com

39

The creation methodology is basically a process of determining each element of view,

which is defined in the previous section. Employing an object-oriented software design,

the methodology consists of the following steps:

• Step 1 : Define visualization knowledge: This step is a process of identifying the

goals of VC

• Step 2: Design a visual design: This step is a process of desiging the structure and

relationship of visual objects in effective format. Design decisions such as how to

layout visual elements, what supplementary labels are necessary, and where to

position them, are made in this step.

• Step 3: Determine graphical primitive(s): This step is a process of designing

graphical primitves so that they best work with the visual design defined in Step 2. It

also decides how to map the data to the designed graphical primitives.

• Step 4: Implement graphical primitive(s): This step is a process of building

graphical primitives defined in Step 3. It involves implementing an graphical

primitive class which defines common attributes and operations of all graphical

primitives, and by inheriting them, building specific graphical primitives.

• (Step 5): Build a template VC: In this step, we define common interfaces and

operations for consistent manipulation and access of VC, and based on them, create a

template component for specific VCs. This step is required only once. Once the

www.manaraa.com

40

template VC is created, we can reuse it without modification for other specific VC

development.

• Step 6: Implement a specific VC: This step is a process of building the specific

VC, which reflects the visual design defined in Step 2, by specializing the template

component designed in Step 5

The next sections describe each step in detail. To illustrate how the methodology

works, a bar chart VC, which is useful for displaying quantitive data, is developed

through the rest of this Chapter.

4.2.1 Step 1 : Define Visualization Knowledge

The first step in the VC creation methodology is to define visualization knowledge.

This step involves identifying the goals of the VC. The description of the goals then

becomes a unique knowledge about the VC, which is used on its retrieval. The task of

identiying goals involves determining the characteristics of the performance information

to be visualized. In other words, this task is a process of determining the properties of

performance data provided by RMC. The following questions need to be answered for

identifying goals:

• What resources can be best visualized by the new VC?

• What types of performance event (or/and) metric data of the resource(s)

can be best visualized by the new VC?

• What types of analysis does the new VC support?

www.manaraa.com

41

Example: I Mine visualization knowledge of \ C
We aim at designing a Bar chart VC, which is good for visualizing:

• Resources: CPU, Memory, Disk, Network activities

• Performance data: Metric data, such as load, utilization, bandwidth, size, etc

• Analysis type: Observing statistical status/trend of resource over time and

comparison between different metric data

Based on this knowledge, we can construct the knowledge of the Bar chart VC as

follows:

supportAnalysisType supportPerformanceData

supportRes ource

Bar Chart VC

Trend
Status

Comparison

Processor
Memory

Disk
Link

Available
Utilization
Bandwidth

Load
Size
Used

Figure 13. Knowledge of VC

The following DAML representation of this barchart can be added to the PVO.

<rdf: Description rdf:about="#BarChartInstance">

<rdf:type>

Instance of BAR_CHART_DESIGN — >
<daml: Class rdf:about="#BAR_CHART_DESIGN"/>

</rdf:type>

<!-- Supporting analysis types -->
<nsO:supportAnalysisType rdf:resource="#Trend"/>

www.manaraa.com

42

<nsO:supportAnalysisType rdf: resource^"#Status"/>

</— Supporting performance data types —>
<nsO:supportPerformanceData rdf:resource="#Processor"/>

<nsO:supportPerformanceData rdf: resource^"iMemory"/>

</-- Supporting resource types —>
<nsO:supportResource rdf: resource^"#Available"/>

<nsO:supportResource rdf:resource="#Utilization"/>

<nsO:supportResource rdf: resource^"#Bandwidth"/>

<nsO:supportResource rdf: resource^"#Load"/>

</rdf:Description>

4.2.2 Step 2: Design a Visual Design

Visual design is very diverse with rich semantic content. It includes both graphical

and stylistic content. This step involves determining their structure and relationship (i.e.

style) and extra graphical primitives that support the visual design. Text labels, legends,

and axis are examples of the extra supporting graphical primitives. Graphical primitives

can be specified using a list. Style, however, are often less precise, which makes it hard to

develop a consistent representation. Representation of visual design is out of the scope of

this research. This research focuses on better uses of visual design depending on

performance problems. Several visual design representation works can be found in

[26] [63] [70] [98],

www.manaraa.com

43

I'Auinple: Define visual design

The basic design of bar chart is to layout given visual elements horizontally along

with x-axis. Y-axis represents data values of visual elements. In addition, we need

labels to describe a type of each axis and a title of VC.

xlabel

ylabel

title

n n
ri 1 ' ri i i i i

y-axis

Visual
elements

x-axis

Elements of Visual Design of
VC

title

ylabel
n n r' r>

xlabel

Visual Design of VC

Figure 14. Elements of Bar Chart visual design

4.2.3 Step 3: Determine Graphical Primitive

Visual encoding is a process of determining a graphical primtive; it involves selecting

a proper visual object and determining its attribute used for encoding the data. Line,

marker, bar, and polygon are good examples of visual object. Length, color, pattern,

width, and size are examples of the attributes of visual object. Graphical primitives are

generally easier to define than stylistic qualities. That is because there is a finite set of

accepted techniques and taxonomies for effective information visualization [70][101][91],

www.manaraa.com

44

Table 4. Effectiveness rankings of different perceptual encoding techniques for three
basic data types (Adapted from [70])

Quantitative Ordinal Nominal
Position Position Position most effective
Length Color Intensity Color Hue Î
Angle Color Hue Pattern/Texture
Slope Pattern/Texture Connection
Area/Volume Text Containment
Color Intensity Connection Shape
Text Containment Text

Length Length
Angle Angle
Slope Slope I
Area/Volume least effective

This step involes identifying visual objects that best work with the visual design

defined in the previous step and determining its effective attribute. Table 4 shows one of

previous studies about the effectiveness of each attribute for different data type [70].

Although it can not be used as an absolute rule, it helps to decide a better attribute for

effective use of the visual object. By applying this effectiveness study to visual objects,

we have come up with Table 5 which shows a preferred data type depending on each

visual object and its attribute. Further, By integrating Table 4 and 5, Table 6 summarizes

effectiveness rankings of graphical primitive for each data type.

Table 5. Preferred data type for each graphical primitive and its attribute

Graphical Primitive Attribute Preferred data type

Line

Length
Color

Quantitative
Ordinal

Line
Pattern Nominal
Width Quantitative
Position Quantitative, Ordinal

Marker
Size
Color

Quantitative
Ordinal

Pattern Nominal
Shape Nominal

Bar Height Quantitative

www.manaraa.com

45

Graphical Primitive Attribute Preferred data type
Color Ordinal
Pattern Nominal

Area
Size(Angle)
Color

Quantitative
Ordinal

Pattern Nominal

Table 6. Effectiveness rankings of graphical primitive for each data type

Data type Graphical Primitive + attribute Effectiveness

Quantitative

Marker position
Line length
Area size
Marker size

Most
t

Line width i
Bar height Least
Marker position
Line color

Most
î

Ordinal Marker color
Bar color I
Area color Least

Nominal

Line pattern
Marker pattern
Marker shape

Most
î

Bar pattern I
Area pattern Least

This step can be recognized as a guideline for selecting appropriate graphical

primitives. The actual decision could vary depending on each person's preference.

Example: Determine graphical primiihcs
Let us pick a bar and its height as a graphical primitive to present quantitive data.

4.2.4 Step 4: Implement Graphical Primitives

This step involves implementing a graphical primitive class which defines common

attributes and operations of all types of graphical primitives. This is one time process

www.manaraa.com

46

such that other specialized graphical primitives (e.g., bar, marker) can be constructed as a

sub class of the graphical primtive class. Having a grahical primtive class supports

consistent access & manipulation of various graphical primitives.

Figure 15 shows a class hierarchy in Unified Modeling Language (UML) [116] class

diagram. The highest class, graphical component class, includes everything from

providing layout hints to supporting painting and events. It also supports for adding

components to the container and laying them out. JComponent class in Java is a good

example. Inheriting such a class help to avoid detail low-level implementation of graphics

operations (e.g., double buffering, painting, refreshing).

Line Marker Bar Polygon

Graphical Primitive

Graphical Component

Figure 15. Class hierarchy of graphical primitive

The design process of the graphical primitive class involves:

• Identifying class attributes: It defines a list of common variables/information that

a graphical primitive must contain

• Defining class constructors: It defines different ways of constructing classes

www.manaraa.com

47

• Idenfitying class operations: It defines a list of common operations of graphical

primitive.

In this research, we have defined the following class information (Figure 16) which

can be extended and/or reused. Figure 17 shows a pseudo code for graphical primitive

class.

Graphical Primitive Class

• Attributes

o timeStamp: As a graphical primitive represents a signle performance

data, the time stamp value, that all performance data have, should be

presented

o colorValue: Every graphical primitive may or should have data

which can be encoded with its color

ovaluel, value2, value3: data values represented by this

graphical primitive

• Constructors

o Graphical Primitive (): an empty class creation

o GraphicalPrimitive (timeStamp, value): creation with

data values

o GraphicalPrimitive (GraphicalPrimitive gp) :

creation with another graphical primitive class. In particular, this

constructor is used on converting a type of graphical primitive. For

www.manaraa.com

48

instance, a height of bar object is compatible with a position of marker

object in a sense that both graphical primitive supports encoding

quantitave data.

• Operations

o encode (value) : It gets a data value and encodes it with

supporting visual attribute. For instance, a bar encodes primilily a data

value with its height. If a new data needs to be added to the same bar, its

value is then encoded with the bar width. The sequence of preferred

encoding is based on Table 5.

o setGPsize (width, height) : This operation allows resizing a

graphical primitive. It does not change actual data value encoded with

the graphical primitive.

o getPreferredSize () : This operation returns its preferred size

when displayed on a screen. VC determines its preferred size by

summing up the preferred sizes of all graphical primitives.

o duplicate () : It returns a new cloned graphical primitive.

Figure 16. Graphical primitive class definition

www.manaraa.com

49

Class GraphicalPrimitive extends Graphical Component {
//Attributes
timeStamp
colorValue
valuel, value2, value3

//Creation
GraphicalPrimitive() {}
GraphicalPrimitive(timeStamp, data) {}
GraphicalPrimitive(GraphicalPrimitive gp) {}

//Encode data
Encode(data)

//Duplicate
Duplicate()

//Set a size
setGPSize(width, height)

//Get a preferred size
getPreferredSize()

Figure 17. Graphical primitive pseudo code

Then the design of each specific graphical primitive can be done by:

• Identifying a graphical primitive specific encoding attributes: It adds new

attributes specific to the graphical primitive

• Redefining encoding operations: It defines a sequence of encoding preferrence.

• Implementing a visual representation of the specific graphical primitive: It

actually implements the look of the graphical primitive using graphics methods (e.g.,

draw a rectangle, line,) supported by Graphical Component class

www.manaraa.com

50

Example: Determine graphical primitives
The bar graphical primitive can be constructed by extending the graphical primitive

class. In case of 'Bar', we set a encoding preferrence as height Width Color. In

other words, if a single bar presents more than one value, it shows a primiary value

with its height, a second value with its width, and so on.

Class Bar extends GraphicalPrimitive {
//Define additional attributes

Assign valuel
Assign value2
Assign value3

//operations

to the height;
to the width;
to the color;

//Creation
Bar() {>
Bar(timeStamp, data) {...}
Bar (GraphicalPrimitive gp)

//Redefining operations if necessary
Encode(data)

//Duplicate
Duplicate()

//Set a size
setGPSize(width, height);

//Get a preferred size
getPreferredSize();

paint(){
Draw rectangle with height, width, and color;

}

www.manaraa.com

51

4.2.5 Step 5: Implement a Template Visualization Component

This step is a process of defining common attributes, operations, and interfaces for

consistent manipulation and access of VC, and based on them, creating a template VC.

The goal of the template VC is to facilitate creation of specific VCs by reusing most of

VC properties. Figure 18 shows a class hierarchy of VC and its related classes.

Bw

Figure 18. Class hierarchy of visualization component

Like GraphicalPrimitive class, a visualization component class also inherits,

graphical component class, which enables a consistent interchange of visualized

information (e.g., graphical primitives, VC).

We have defined the following attributes and operations to meet the requirement of

VC, which is discussed in Section 4.1.

www.manaraa.com

52

Template Visualization Component Class

• Attributes

o visualDesignName : name of visual design that the VC presents

o startTimeStamp : start collection time of data that are presented in

VC

o endTimeStamp : end collection time of data that are presented in VC

o currTimeStamp : time of data that are currently displayed in VC

o visualElementList : a list of visual elements.

o nodelnfo : a list of nodes that are presented in VC

o resourcelnf o : a list of resources that are presented in VC

o perfDatalnf o: a list of performance data types that are presented in

VC

• Constructors

o VisualizationComponent () : an empty class creation

o VisualizationComponent (visualElementList) :

creation with a list of visual elements

o VisualizationComponent (VisualizationComponent

vc) : creation with another VC. In particular, this constructor is used

for converting one VC to its compatible VC. For instance, a bar chart

VC can be compatible with a line chat VC in a sense that both VC

supports quantitative performance metric data

• Operations

www.manaraa.com

53

o buildview () : it implements a visual design. In other words, this

operation layouts the visual elements based on the visual design,

o getMaxHeightValue () :it returns a max height value (in display)

of VC

o getMaxWidthValue () : it returns a max height value (in display) of

VC

o adjustComponentSize () : it adjusts the size of VC and its sub

components (e.g., visual elements).

o setMargins () : it sets margin values of VC

o paint () : it draws extra graphical primitives, such as text labels, x-

axis, and y-axis.

o duplicate () : it clones the VC

Figure 19. Visualization component class definition

In addition, the following interfaces need to be implemented for manipulation and

access of VC by other components.

Interface VC_Interfaces {

set/getVisualDesignName ();
set/getAnalysisType ();
set/getNodelnfo();
set/getResourcelnfo();
set/getPerfDatalnfo();

addVisualElement (GraphicalComponent gc);
addVisualElement (GraphicalPrimitive gp) ;
addVisualElement (VisualizationComponent vc);
set/getVisualElementList (visualElementList);

set/getCurrTimeStamp();

www.manaraa.com

54

getStartTimeStamp () ;
getEndTimeStamp ();

setVCsize(width, height); // Set a display size of VC

}

Figure 20. Visualization component interfaces

4.2.6 Step 6: Implement a Visualization Component

Inheriting a template VC, this step involves defining additional attributes and

redefining the operations. In particular, implementation of visual design requires

redefining a buildView () operation for lay-outing visual elements and a paint ()

operation for drawing supplementary graphic objects (e.g., labels, axis).

Class VC extends TeiqplateVC {

//defining additional attributes if necessary
//redefining operations if necessary
//Implementing visual design

//redefining bui1dView()
buildView() {

// Based on a visual design, layout visual elements
For (all visual elements) {

add a visual element;
set the location of the visual element;

}
}

//redefining paint ()
paint() {

Draw labels (e.g., x label, y label, title);
Draw supplementary visual objects (e.g., x, y axis);

}

www.manaraa.com

55

Figure 21. Pseudo code of Visualization Component (VC)

Figure 21 shows a pseudo code of VC. A specific VC extends a template VC by

redefining attributes and/or operations if necessary.

Once we define the VC, we add it to the PVO as a new instance of the selected visual

design.

Example: Implement a visualization component
Once we define a bar graphical primitive class, we create actual visual elements

(i.e., bars) with real data. Then, we pass the elements to the bar VC. The bar VC

layouts the given visual elements.

Ill l
Bar

80.5
95.8
15.2
55

Data

-e-

ylabel

Visual
elements

title

il,H
-e—

2G.'i c<5 2/2 5 OSIevel Memory Avail

xlabel

Bar Chart VC

Figure 22. Bar Chart VC creation

www.manaraa.com

56

4.3 Summary

This Chapter provided the definition of visualization component, including the

requirement of building composable and sharable visualization components. In particular,

we provided a set of interfaces and data structures of visualization components for

seamless information integration and uniform manipulation of the components. Further,

we presented a visualization componet creation methodology, which consists of multiple

steps: visualization knowledge definition, visual design definition, graphical primitive

determination, graphical primitive implementation, template VC creation, and VC

specialization. The section 4.2 demonstrated each step with the example of creating a bar

chart visualization component.

www.manaraa.com

57

CHAPTER 5. VISUALIZATION COMPOSITION

The ultimate goal of this research is to provide a systematic creation method of

system-level performance visualizations. This Chapter describes different types of

visualization compositions and a composition methodology.

5.1 Visualization Composition

Composition simplifies view creation for typical users, not unlike the use of a chart

wizard in a desktop spreadsheet tool. Visualization composition is for creating a System-

level Performance Visualization (SPV) that presents data and/or visual correlation

between multiple resources. Here, correlation does not necessarily imply statistical

correlation. Instead, it presents perceptually inferred new information that can be obtained

trough a new composite visualization. Data correlation presents the degree of association

between performance data of resources. For instance, a scatter plot, which shows

'association between CPU load and network latency', is an example of data-correlated

SPV. In data-correlated SPVs, the association is directly visible. On the other hand, a

visual-correlated SPV presents association indirectly. It rather focuses on integration of

existing visual representations. For instance, a network graph, of which nodes themselves

are pie charts showing memory used/avail of hosts, is a visual-correlated SPV, which is

created by composing a network graph and several pie charts. In general, data-correlated

SPVs are limited to a few specific visualizations (e.g., a scatter plot), of which views are

fixed. In this research, we focus on visual correlation approach of SPV.

www.manaraa.com

58

Depending on the level at which visualization composition happens, we can have

different composite views. We have categorized three different levels: component-level,

graphical primitive-level, and view-level. The purpose of this categorization is to help

users in choosing an appropriate composition method for goals.

Component-level composition enables users to construct custom exploration

interfaces by coordinating multiple views [77]. The main goal of this approach is to

provide consistent methods to explore multiple visualizations concurrently. For instance,

a system manager wants to analyze a web log. Using multiple coordinated visualizations,

the manager can explore various aspects of the log. A geographical map view displays

where HTTP requests came from. As the manager selects a particular location on the

map, a table view shows a list of pages requested from the selected location. At the same

time, a bar chart view shows the frequency of each requested page (Figure 23). This

composition assumes that a visualization developer must know in advance which

visualizations should be coordinated; no guidance is provided.

Figure 23. Component-level visualization composition

Graphical primitive-level composition composes views based on the graphical

primitives that encode the same information, and synchronizes the views based on a

common independent variable. It results in a new view that synchronizes/joins (spatially

and temporally) individual views into a single graph based on a common independent

www.manaraa.com

variable. Synchronization between two views depends on a concrete set of transformation

rules; it is straightforward given design knowledge about the visualization components.

We can specify a design transformation rigorously that matches two different line graphs

sharing a common independent variable and replaces these graphs with a single graph. A

composition operation at graphical primitive level is merging. The goal of merging is

often to compare two views and/or identify correlation between the views.

There are three commonly used merging operations [102]:

• Merging by union: it combines graphical primitives of views using set union.

Suppose there are two bar charts: one shows available memory over time with

executing a particular program and the other shows the same without executing. By

merging data sets of two bar charts, we can come up with a new bar chart that shows

both information in a single view, which leads to the estimation of memory

requirements over time for the program (Figure 24 (a)).

• Merging by encoding: It merges graphical primitives of views by encoding each

visual element of one view with a compatible set of marks of the other. This

composition is based on a principle that if one visual design can compromise another

visual design, a composite view can be created by re-encoding graphical primitives of

the visualizations [26] [70] [98]. Figure 24 (b) shows an example of merging-encoding

composition. The bar chart view presents the utilization of three processes (pi, p2, p3).

The network topology view shows the interaction relationship between processes; e.g.,

pi interacts with p2 and p3. We then can compose two views by re-encoding each bar

of the bar chart with the different color of each node in the network view. The new

composite view shows the interaction relationship and the utilization values over time.

www.manaraa.com

60

• Merging by intersection: It combines a pair of graphical primitives by first

computing their intersection, then superimposing the intersection onto one of the view.

Suppose one view shows a CPU load and the other view shows a message sent event.

By intersecting two views, we can identify how each sent message correlates with the

CPU load (Figure 24 (c))

pi

pi p2 p3

+
(a) An example of merge-union

+
P2 -A'

(b) An example of merge-encoding

ill +
(c) An example of merge-intersection

Figure 24. Graphical primitive level visualization composition

View-level composition aids in the design of new visualization layers that represent

the cooperation between/among resources. The operation of this type of composition is

referred to as synthesis. It is a conscious activity by a designer that may not be automated

www.manaraa.com

61

as fully as union. It synthesizes the attributes of visualizations and creates a new

visualization that supports synthesized attributes of visualization. It requires indexing of

visualization components according to a classification scheme. To replace an aggregate of

two independent views with a new one, the designer decouples the aggregate

visualization from the resource-monitoring components (aggregate resource) and

specifies a set of search attributes to guide the search for a new visualization component.

The goal of synthesis is to enhance visual relationships among views and/or present more

global information.

Suppose a matrix view and a bar chart view have been known effective for presenting

interaction and status of resources, respectively, which is knowledge. In Figure 25, the

matrix view presents communication bandwidths between processes, and the bar view, a

utilization of each process. Both views have different visual designs and neither of them

can compromise the other. We then need to create a new visualization layer to compose

these views. A new visualization should accommodate both visualization knowledge (i.e.,

interaction and status). A network view can present both design knowledge in the sense

that interaction and status are represented by the edges and different color of the nodes,

respectively.

SO,

• II a

• III
• III

I

Figure 25. View-level visualization composition

www.manaraa.com

62

5.2 Methodology for View-Level Composition (Synthesis)

The motivation for composition in all cases is analyzing the performance of multiple

resources. In particular, URV with PVO provides a way to look up appropriate

visualizations to display particular performance problems. The utimate goal of our efforts

is to develop a structured design methodology for creating a system-level performance

visualization, focusing on employing visualization knowledge. This section describes our

methodology on view-level composition operation, synthesis.

The methodology consists of the following steps:

• Step 1 : Compose knowledge of visualization components: This step is a process of

composing different knowledge of VCs and create an integrated knowledge that a new

composite VC will present

• Step 2: Identify new visualization component(s): This step involves searching

visualization component(s) that matches the integrated knowledge. It first constructs a

query and looks up into Performance Visualization Ontology (PVO) for matching

• Step 3: Construct a new VC: This step is a process of specializing the found VCs ,

with the visual elements of source views

5.2.1 Step 1: Compose Knowledge

The first step in the synthesis methodology is to merge visualization knowledge. By

merging knowledge, we can keep the same semantics in the final composite VC. As

described in Chapter 4, each performance viusalization knowledge can be a combination

of supporting analysis types (A), resource types (R), and performance data types (P).

www.manaraa.com

63

The knowledge of VCl: (Ai, Rl, PI), The knowledge of VC2: (A2, R2, P2)

Compose: (Ai, i?i, Pi) © (A2, i?2, P2)

-»({Ai, A2}, {Ki, i(2}, {fi, f2})

A: a set of analysis types, R: a set of resource type, P: a set of performance data
types, ©: composition

Figure 26. Merging knowledge

Given two visualization components, VCi and VC2, their knowledge composition can

be done by merging each element of knowledge. Figure 26 describes a knowledge

merging process.

Example: Compose

Suppose there are three VCs: two displays message send/receive events of sender

and receiver, and the other displays status of processes involving this message transfer.

Processlevel P2 SentiJ

Figure 27. VCl (displays the occurrences of send events with markers over time)

www.manaraa.com

64

Figure 28 VC2 (displays the occurrences of receive events with markers over time)

L=

P.s

F'2

uïl.6 l

Km

Figure 29. VC3 (displays the status of processes with different colors (yellow: idle,
green: busy))

Knowledge of VCl = ({Status}, {Process}, {Send})

Knowledge of VC2 = ({Status}, {Process}, {Receive})

Knowledge of VC3 = ({Status}, {Process}, {Busy, Idle})

A new knowledge can be obtained by merging them: ({Status}, {Process}, {Busy,

die, Send, Receive}).

5.2.2 Step 2: Identify New Visualization Component(s)

In this step, using the newly composed knowledge in the previous step, we query

Performance Visualization Ontology (PVO) to find new visual designs and VC instances

www.manaraa.com

65

that match. As denoted in Section 4.4, we use a DAML query language to construct a

query.

In this step, we construct a DQL query for asking whether/which visualization

component(s) support visualization of ({Status}, {Process}, {Busy, Idle, Send,

Receive}).

supportAnalysisType,, upportPerformanceData

Receive

Figure 30. A RDF-based query model of the composed knowledge

Reasoning the query, the PVO query system identifies a matched visual design,

which is a space diagram design. In particular, a certain instance VC of space-diagram

design supports ({Status, Interaction}, {Process}, {Busy, Idle, Send, Receive}), which

accommodate the all elements of queried knowledge. Note that the new VC also

supports "interaction" analysis.

5.2.3 Step 3: Construct a New Visualization Component (VC)

This step involves specializing the newly found VCs with the visual elements of the

source VCs. This process makes use of addVisualElementList

(visualElementList) method, which enables adding existing visual elements to

www.manaraa.com

66

the VC. Then, the new VC builds a view with the added visual elements based on its

visual design.

I'Xample: Construct a New VC

In this step, we specialize a newly found VC (SpaceDiagram).

VisuaiizationComponent vc = new VisualizationComponent (SpaceDiagram);

vc.addVisualElementList (vcl.getVisualElementList());

//add VCl's visual elements

vc.addVisualElementList (vc2.getVisualElementList());

//add VC2's visual elements

vc.addVisualElementList (vc3.getVisualElementList());

//add VC3's visual elements

vc.buildView(); //build a view

As shown in Figure 31, all visual elements of source VCs are in the new VC, but

now we also have new graphical primitives, which are links connecting two events

(send, receive). These graphical primitives are in part of the visual design of the new

Figure 31. A new composite VC

VC.

www.manaraa.com

67

5.3 Summary

This Chapter provided the principle and methodology of the proposed visualization

composition approach. First, we categorized different levels of composition to help users

determine an appropriate composition method to meet the user goals. The levels include a

component-level, graphical primitive-level, and a view-level. Further, we defined a set of

composition operations for graphical primitive level (merge by union, encoding, and

intersection) and view-level (synthesis) compositions. In particular, this Chapter

presented a methodology for synthesis, which is knowledge-based composition. The

methodology consists of three steps: knowledge composition, visualization search by the

composed knowledge, and a final VC creation.

www.manaraa.com

68

CHAPTER 6. SPREADSHEET FOR SYSTEM-LEVEL

PERFORMANCE VISUALIZATION

This Chapter describes our new performance visualization technique that employs a

spreadsheet metaphor. This technique facilitates applying our methodologies to

visualization components.

6.1 Spreadsheet Visualization

Spreadsheet visualization [25] [69] [118] provides a robust and intuitive technique for

presenting and interacting with multiple visualizations. Among its advantages, it supports

many of the classic visualization methods articulated by Edward Tufte, such as small

multiples, layering and separation, relational graphics, etc. For instance, Spreadsheet for

Information Visualization (SIV) [25] arranges visualizations in a spreadsheet grid and

maintains common viewing parameters along rows and columns of visualizations. SIV

also supports operations, such as rotation or data filtering, on a group of visualizations.

Such operations are effective for comparing two or more related data sets. There have

been a number of extensions to SIV [69] [118] and spreadsheet visualization in general, as

well as applications of spreadsheet visualization to numerous information domains. Most

spreadsheet visualizations are based on homogeneous data sets. The operations on cells

(data objects or views) are limited to numeric computations, which cannot deal with the

semantics of data sets. A tool, such as Vis AD [55], uses data and display models with

component metadata that is more flexible; however, it is specific to scientific

www.manaraa.com

69

visualization. New spreadsheet operations are needed to support integration of

performance data at multiple levels based on their semantics.

6.2 Spreadsheet for System-Level Performance Visualization

In this research, we extend the SIV approach to the performance visualization domain,

developing a tool called Spreadsheet for System-Level Performance Visualization

(SSPV) to enable system-level analysis of complex computing systems by integrating

performance information. This approach will not only result in a usable tool, but it also

will provide a means to develop and demonstrate URV services and operations, such as

composition. Applying the SIV approach to performance visualization provides the

following benefits:

• Ability to compare performance over multiple time periods: Comparing resource

behaviors between different time periods is very useful to drilldown performance

issues. For instance, given the last week data, which could be a baseline, we can

compare this week data to see any major difference. If there is a significant

performance degradation, we can start drilldown the problem by comparing, for

instance, different network setups, and/or memory allocation policies of the

machine. The SIV provides a greater flexibility in placing multiple visualization,

each of which presents different time periods.

• Ability to accommodate a large set of visualizations: As we discussed in Chapter 1,

monitoring a distributed application requires monitoring many related resources. In

that perspective, the SIV is scalable to accommodate many visualizations in one

place.

www.manaraa.com

70

Figure 32 shows the snapshot of SSPV, in which a cell contains a visualization

component (VC). SSPV consists of three main parts: toolbar, worksheet, and time control.

The toolbar supports several basic spreadsheet operations, such as add/remove

columns/rows/worksheet, and copy/paste/select cells. The primary functionality of SSPV

is to host visualization components. After the creation of VC, we can place the VC in any

cell in the worksheet area. The time control allows users observe data at a specific time.

Once we select visualization component(s), we can move the time control bar at the

specific time. Then, the visualization components only display data at the specified time.

This functionality is useful when observing correlation between multiple resources over

time.

SSPV supports composition operations: merge and synthesis on VCs. In particular,

compared with other SIV-based tool, a key innovation of SSPV is to support synthesis

operation. Knowledge operations use knowledge to manipulate and transform the

information at higher levels and/or with more advanced analysis, such as correlation of

data sets. Based on visualization knowledge, synthesis operation can result in a new

visualization that integrates performance information across the selected resources, levels,

or aspects.

www.manaraa.com

71

Toolbar

OSlevel Werran Aval ,.7.OSIevel CF

11 1 «

ill. 11 JOE Ï 111
Dewelevei Neiwerk ioaU OSievel Memory OSlevel CPU u-i'i

Time control Visualization
Component

Figure 32. System-Level Performance Visualization (SSPV)

To facilitate a connection to RMCs, SSPV has its own RMC directory browser

(Figure 33), which is invoked from Browser menu on the toolbar. The directory browser

connects to a directory service, which contains a list of registered RMCs, and displays the

RMC information.

www.manaraa.com

72

RMC Directory Window

Wme I
CPU_8_Load 18-129196.232.9 iOSIevel ÇPu.^uax.j^ii?J^6jyj9_iO^_L

jDemoRMC iDemoRMCPRC ;flet_cpu_B_loacl http:fllocalhpst:8090/D.

P3_Rur>_Status te-129.196.232.9 Processlevel |P3
jPemoRMC IDemoRMCPRC ;get_cpu_Ajoad nttpJ/localhost8080/D

P2 Run.Status iA-129196.232.19 -Processlevel jP2
jDemoRMC iPemoRMCPRC iget_p3_run_st.. httpifllocalhosteoeo/p

P2_Send_Event
A_Memory.U>ad
R_eUans^AC >0-129 196 232 9 _ Networklevel ;i
Retrans.AB AB 129196 2329 Networklevel Link

iP3 _ _ iRecv„£vent
]P2 _ "iSend.Evenr
jMemory _jUad
Link Retransmission

jDemoRMC IPemoRMCPRC iget_p2_run_st... jhttpJ/localhost8080/D.

;Bet_p2_send_...jhttpJ/localhostS08CUD.
IgeLmemoiyJ... ;httpJlocalhost80800.

JgeVelran_s_AC :httpin_ocalh_ost_808CWD
Retransmission DemoRMC DemoRMCPRC lgel_

•

, Refresh em I stuan rait attend mo

Figure 33. RMC directory browser

A user can select RMC(s) of interest and create VC(s) that match with the selected

RMCs by clicking Insert Selected RMCs. SSPV queries possible VC matches to

Performance Visualization Ontology (PVO). The possible matches are suggested to the

user via the preview window (Figure 34). In the preview window, the user can select one

of possible matches and preview a final VC look by clicking Preview button. Once a VC

is decided based on the user preference, the user can insert the VC into the current

worksheet or create a new worksheet only with the VC.

Figure 34. Matched VC and its preview dialog

The current SSPV is primarily for demonstration purpose, focusing on composition

operations. It, however, could be extended to support other SIV operations, such as

www.manaraa.com

73

filtering and numeric operations (e.g., min, max, subtract, add data), as well as more

sophisticated spreadsheet operations, such as sorting (e.g., sort by a resource name).

6.3 Summary

This Chapter presents a new spreadsheet-based visualization tool, called Spreadsheet

for System-level Performance Visualization (SSPV), which provides a robust and flexible

visualization environment for dynamic creation of system-level visualizations. SSPV

extends Spreadsheet in Information Visualization (SIV) in a way that supports

performance data and composition operations (merge and synthesis). In addition, SSPV

supports basic spreadsheet operations, such as add/remove

rows/columns/worksheets/cells, and has its own built-in RMC directory browser

www.manaraa.com

74

CHAPTER 7. PUTTING IT ALL TOGETHER

This Chapter describes the URV framework in action. First, we describe a

performance visualization system built based on our methodologies. We use this

visualization system to demonstrate an end-to-end performance monitoring scenario. The

methodologies are implemented as web services which can be accessible by other

software agents. Secondly, we describe a testbed, which is based on the performance

scenario discussed in Chapter 1. We have implemented the testbed with a simulation

package. The rest of this Chapter shows how the proposed URV approach helps drill

down a root cause of performance problem.

7.1 URV System

A combination of web services and ontology technologies has a potential to provide a

consistent, seamless, and intelligent integration of heterogeneous resources. Web services

provide an interoperable interfacing method between heterogeneous software

components. Ontology allows sharing domain specific knowledge in a consistent way,

which leads to reuse of well-recognized solutions. Uniformity in URV is implemented by

wrapping instrumentations with web services and by defining interfaces of visualizations.

These facilities provide users with uniform interfaces for accessing, viewing, and

managing heterogeneous resources. Reusability in URV is provided via performance

visualization ontology. Users can retrieve existing visualization knowledge of interest and

using the knowledge, they can identify the actual visualization component. Composition

refers to support for higher level, e.g., system-level visualization.

www.manaraa.com

75

Figure 35 shows a URV-based performance visualization system. A system consists

of resource-monitoring components (RMC), visualization components (VC), a user

application, web services, and performance visualization ontology.

System
manager

package URVSpreadSheet;

import java.awt.*;
import java.awl.evenl.*;
import javax swing.';
import javax.swing.tab le.*;
import javax.swing.border";

import URVwsuaiizatioa*;
/**

* System-level visualization
app.
• «author jIN
*/

pU)Bc class spreadsheet
extends
static DefaulTableModel
model;

static JTabie table;
//state JComponent 00

vcLoc;
final static irt VC.WIDTH

Service query and
answer

request

access

Composition |
Service

Performance
Visualization
Ontology

Visualization
developer

User application

RMC
Directory H registers
Service 8 RMC

RMC
developer

Construct
performance
visualization

Provides VC

Figure 35. URV-based performance visualization system

A user application is software that makes use of URV services. It could be any

software that needs performance visualization capability. In our research, SSPV, which is

described in Chapter 6, is recognized as a user application that makes use of URV

services. Web service based directory service can be accessed from anywhere with

various programming languages. In addition, the registered information can be retrieved

with any web service enabled software module. A query service enables querying-

answering knowledge. Given the information about a RMC of interest, a query service

returns matching visualization component(s). Given multiple RMCs and visualization

www.manaraa.com

76

components, a composition service validates any combination of the attributes by

querying performance visualization knowledge.

7.1.1 URV Services

URV supports services for reusing visualization components, as well as composing

visualization knowledge to create system-level views. In this section, we describe URV

services and the current approaches. Distinctive web services in URV include: (1) query

service to query proper visualization knowledge, (2) directory service to search the

sources of performance data (i.e., RMC) ,and (3) composition service to validate a new

visualization based on multi-level, composable, reusable, and distributed components. We

use Java API, JAX-RPC, to implement the web services.

A query service enables querying-answering performance visualization knowledge.

For instance, a query service is able to process and answer a query like 'What visual

designs are appropriate for visualizing metric X on resource Y?'. A query service is

designed as a web service to allow users or software to make a query using a designated

web interface or a SOAP protocol. A DQL query pattern contains a set of DAML+OIL

sentences in which some literals and/or URIrefs have been replaced by variables. A query

answer provides bindings of terms to some of these variables. Each binding in a query

answer is a URIref or a literal that either explicitly occurs as a term in the knowledge.

That is, DQL is designed for answering queries of the form "What URIrefs and literals

from the knowledge denote objects that make the query pattern true?" Figure 36 shows a

basic operation of the query service.

www.manaraa.com

77

Given a combination of
A, R, P, ask VC

0

0
•4
Answer
VC(s)

•> Query
Service Ontology

/

A: analysis type, P: performance data type, R:
resource type, VC: visualization component

Figure 36. Query service

A query service facilitates reuse of visualization by systemizing querying/answering

visual designs that meet the user goals. Answered visual design(s) is used as a key

identifier for searching visualization component(s) that are already developed. In addition,

a query service is used for evaluating performance visualization ontology. In practical,

deciding how well knowledge is designed is up to how well (i.e., correct) knowledge

answers queries. A query service enables delivering queries/answers on validating the

A RMC directory service maintains component information for retrieval by others.

For instance, a RMC developer develops a new network monitoring component. This

monitoring component is a web service that measures the network traffic of the server on

which the component runs. Using a registration web page, the RMC developer submits

component information, such as analysis types and event types, with the location of Web

Service Description Language(WSDL) [123] that describes how the component interacts.

When a RMC directory service finds this RMC best-matched, it returns the location of its

WSDL so that a requesting agent accesses the actual network monitoring component

based on the WSDL.

PVO.

www.manaraa.com

78

In Chapter 5, We have identified different types of composition, ranging from simple

to complex: placing two views in the same window and providing view synchronization;

merging two or more separate data streams of the same type into a single view; merging

two or more data streams of different types into a view connected with one of the streams;

and deriving a new view that connects to two or more data streams. A composition

service systemizes a construction process of a system-level performance view. It performs

merge or synthesis composition operation.

7.2 Case Study

This section describes a case study of performance monitoring that demonstrates the

research outcomes. The case study is based on the performance scenario introduced in

Chapter 1. In this case study, we have developed a simulated environment to obtain

necessary performance data.

7.2.1 Performance Scenario

In the performance scenario discussed in Chapter 1, scientists are collaborating to

decide the position of solar panel of a space station, running a collaborative VR

application on a SGI Onyx at ISU and a Linux cluster at NASA. Both systems are

connected by a high-speed vBNS network. As an ISU scientist moves a solar panel virtual

object, a NASA scientist experiences an unexpected latency during rendering the panel

object. Suppose the following multiple causes across multiple levels and platforms result

in the latency:

www.manaraa.com

79

1. Suppose a certain collaboration application running on SGI Onyx at ISU has been

involving a heavy message transmission with the Linux cluster at UCSD. A TCP

window size between ISU and UCSD, however, is incorrectly set, which causes

TCP packet retransmission.

2. As these retransmitted packets hold message buffers at ISU longer than expected,

the memory allocation of these buffers clashes with the memory allocated for

other operations.

3. In turn, CPU at ISU dedicates all CPU power to a memory manager to resolve this

clash. As a scientist at ISU moves a solar panel object, an object middleware

issues an object movement request, which then needs to be translated to TCP/IP

transmission to NASA. Meanwhile, the clash delays handling the requests from

VR application at ISU.

4. Consequently, the delay results in a high latency in message transmission to the

NASA.

When monitoring these events, typical performance visualization environments suffer

three problems: (1) they provide little guidance on selection of visualizations; a system

manager should have in-depth design knowledge; (2) they are not reusable. A line chart

visualization used for monitoring TCP transmission at ISU has little chance to be reused

at NASA to monitor incoming traffic; and (3) they support only fixed system-level views.

In the given performance scenario, as a root problem is being traced, several system-level

views should be created dynamically; e.g., a view showing correlation between process

www.manaraa.com

80

scheduling and memory utilization, a view showing correlation between memory

utilization and network utilization. Existing performance visualizations, however, are

limited to fixed system-level views.

URV addresses these problems. Suppose a visualization expert at somewhere already

invented a new visualization for CPU load, following URV interface definitions. He/she

provides a description of its visualization knowledge via PVO. A system manager in a

different domain has performance data whose constraints fit the form of the said

description; he/she can apply the same visualization to visualize the CPU load in the new

platform.

7.2.2 Testbed

This section describes the testbed that simulates the performance problems mentioned

in the previous section. For testbed, we have developed a simulation environment using a

simulation package, called Simjava, which is a process based discrete event simulation

package [57]. Simjava allows defining simulated entities that sends or/and receives

discrete events, and simulated designated operations. A basic operation of simulated

entities is communication. Each entity can exchange messages, which describe

status/actions of entity. Figure 37 shows the testbed, including simulated entities and a

sequence of performance problems.

www.manaraa.com

81

Proc 2 (VR app)

Thx Delay in
receiving MPI
msn|

3. Overhead
in migrating
collided
memory
block

App1

Appi 1 sends
msg to èost C

CPU MEM CPU MEM 2. Memory
overflow due to
longer holding

retransmission
messages

Network
Interface

Network
Interface ,

Host A (ISU) Host B (NASA)

1.Retransmission

Network
Interface

Host C (UCSD)

Figure 37. Performance scenario testbed

For instance, a message ID 0 presents a send message from the application 1 in the

Figure 37. In addition, Simjava allows setting a probability in a certain even occurrence.

We can specify, for instance, a probability of retransmission occurrence.

7.2.3 Problem Diagnosis Scenario

The following sub research outcomes are demonstrated in this section. A full list of

research outcomes is described in Chapter 9.

• Ability to retrieve resource monitoring components of interest

o Related contribution: Visualization framework (C.l in Section 1.5)

• Ability to identify proper visualization components based on the knowledge

www.manaraa.com

82

o Related contribution: Knowledge representation (A.l in Section 1.5)

• Ability to compose visualization components dynamically

o Related contribution: Composition methodology (B.2 in Section 1.5)

• Ability to compose visualization components based on their graphical

primitives

o Related contribution: Visualization component creation methodology (B.l

in Section 1.5)

• Ability to compose visualization components based on their knowledge

o Related contribution: Composition methodology (B.2 in Section 1.5)

• Ability to manipulate visualization component using SSPV

o Related contribution: Spreadsheet visualization (C.2 in Section 1.5)

Using the testbed, we have obtained performance data of each simulated entity, such

as CPU load at Host A, memory allocation at Host A, and receive events at Host B. In

this section, given performance data, we describe how to drill down a performance

problem. Note that there could be many possible ways to drill down the problem. In this

research, we do not attempt to provide an optimal drilldown. Instead, we focus on

providing a systematic way of drilldown.

Observing the first symptom, which is a latency at Host B (NASA), we can narrow

down the issue with following diagnosis steps:

Stepl: Observe the status of processes at each host.

First, we can observe the status of process at Host A and B, which involves in object

drawing, which sends messages to B. Using the RMC directory browser of SSPV, we

first need to identify RMC that can provide such status information (Figure 38).

www.manaraa.com

83

RMC Directory Window

i Resource i Metric j Sendee i I Taroet node se%ct
B-1291S6 232 9
At 29 196 232 19

OSlevel
OSIevel

DemoRMC DemoRMCPRC
DemoRMC DemoRMCPRC

peLc puJBjosà fittpJnocalhostsOduiD
geLcpu_A_load http://localhost8080/D

ÇP^Lqad,
CPU A Load

DemoPMC DemoRMCPRC B 129198 23Î9 {j6*_Bf3_<urust P3_«un Status

P3 Recv.Event Recv Event get_p3_recv_e... jhttp^localhostSOBO/D DemoRMC B-129.196.232.9 Process evel DemoRMCPRC
Processlevel Send Event DemoRMC DemoRMCPRC get_p2_send_... ihttp^ocalhost808Q/D P2_Send_Event M 29.196.232.9

A_Memory_Load M 29.196.232.19 OSLevel Memory DemoRMC DemoRMCPRC get memoryj... http^localhost8uB0/D
Nelwniklpvel

Networklevel

Retransmission DemnRMfi nsmnRMCPPft gat_reirans_AC thttpffiQra|ho<it'9nflfl/D
getjretrans^AB h«p fflocatiosf 808C/D

Oclrane Ar MVnQIQfi 939 9
AB-129 196 232 9 Retransmi ion DemoRMC

SetoctM biswt wkuluil RM.S CwK

Figure 38. Select a RMC that provides the process status information

Based on the performance data type, SSPV queries PVO for the matched visualization

components. Given the process status information, the query service returns a gantt chart

component, which can be previewed before added to the spreadsheet (Figure 39). A

yellow color (or a lighter shade on the mono color printout of this thesis) of rectangle

presents idle while green color (or a darker shade) presents a busy status. The gantt VC is

added to SSPV (Figure 40).

Figure 39. Matched Gantt Chart component for process status

www.manaraa.com

84

% Spreadsheet for System-level Performance Visualization

F* lUinweei ru taunt

mmmmti

10Ù5 ! 46

Figure 40. Gantt Chart components added to the worksheet

Rest)uttomcs Demonstrated
• Ability to retrieve resource monitoring components of interest: It is able to

browse available RMCs that produce process status information.

• Ability to identify proper visualization components based on the knowledge:

It is able to identify a Gantt chart based on the event type of performance data

• Ability to manipulate visualization component using SSPV: It is able to place

two different Gantt chart components on the spreadsheet.

Step 2: Attempt to observe the correlation between two process status.

Once we have two separate VCs that monitor process status, we attempt to correlate

them into a single view to observe any noticeable behavior. We can merge them into a

single view by union.

www.manaraa.com

85

Spreadsheet for System-level Performance Visualization

«I**»***»**»!
Select and apply

aft

Figure 41. Merge two process status VCs by merge-union

• Ability to compose visualization components dynamically: It is able to create a

new visualization on the fly.

• Ability to compose visualization components based on their graphical

primitives: It is able to compose two Gantt charts by union-merging.

• Ability to manipulate visualization component using SSPV: It is able to select

multiple visualization components on the worksheet and apply a composition

operation.

Step 3: Clarify the correlation.

The merged view can give us some insight on their interaction. Meanwhile, the

current view does not clearly give how busy/idle status of sender process (P2) affects the

status of receiver (P3). To address this, we attempt to incorporate communication

information between processes. We create two additional views, each of which presents

message send or receive events (Figure 42).

www.manaraa.com

86

Processlevel Processlevel

Figure 42. Visualization of Send/Receive events

Then, we incorporate those send/receive event information into the 1-c view in Figure

41. This can be done by synthesis operation. The knowledge of each VC (1-c, 2-a, 2-b) is

represented as:

• Knowledge of 1-c = ({Status}, {Process}, {Busy, Idle})

• Knowledge of 2-a = ({Status}, {Process}, {Send})

• Knowledge of 2-b = ({Status}, {Process}, {Receive})

A new knowledge can be obtained by synthesizing them: ({Status}, {Process}, {Busy,

Idle, Send, Receive}). Using the new composed knowledge, SSPV queries PVO. The

matched VC (space-diagram) is created (Figure 43). From the new view, we can observe

that the sender (P2) is unnecessarily idle between time 50 and 75. This implies that CPU

at Host A might be busy doing something else.

www.manaraa.com

87

idle

Figure 43. Space diagram visualization component

• Ability to retrieve resource monitoring components of interest: It is able to

browse process send/receive event information via the RMC directory browser.

• Ability to identify proper visualization components based on the knowledge:

It is able to identify event chart view based on send/receive event data.

• Ability to compose visualization components dynamically: It is able to

identify a new composite view on the fly.

• Ability to compose visualization components based on their knowledge: It is

able to identify a new space diagram view based on combined knowledge

Step 4: Correlate CPU information

In order to verify our hypothesis (i.e., CPU at Host A is being hold by something else)

in the previous step, we attempt to incorporate CPU load information. First, we create two

VCs that present CPU load at each host (Figure 44). Then, we merge those CPU VCs

with 2-c in Figure 43 by marks. During the merging-marks, each rectangle, which

presents process status, in 2-c, are encoded with additional CPU load value (Figure 44).

From the newly composed view, we can confirm that CPU at host A is busy doing

www.manaraa.com

88

something else, which leads to the conclusion that the root cause of the problem is not in

Host B. Instead, the issue resides in Host A.

OSlevel OSlevel

Figure 44. Visualization of CPU load information

U load indeed

Figure 45. Composed space-diagram with CPU load information

Research Out comes Demonstrated in Step 4:
• Ability to retrieve resource monitoring components of interest: It is able to

obtain CPU load information via the RMC directory browser.

Ability to identify proper visualization components based on the knowledge:

It is able to identify line chart view for a given CPU load data

Ability to compose visualization components based on their graphical

primitives: It is able to compose views by re-encoding process status information

with CPU load data.

www.manaraa.com

89

Step 5: Find a resource that causes CPU load

In this step, we further correlate behavior of resource at Host A. In a real

environment, there could be many available RMCs. In this particular testbed, we,

however, focus on a limited set of RMCs to evaluate the proposed approach. Among the

available RMCs that monitor resources at Host A, we attempt to observe the information

about memory allocation for retransmission. 4-a in Figure 46 shows the memory

allocation information at Host A. We can align two VCs vertically so that we can observe

implicit correlation over the time. As shown in Figure 46, aligning 3-c and 4-a can give

us a good visual correlation; CPU load information in 3-c are well matched with the

growth of memory allocation. This leads us to the observation that memory buffer

allocation due to the retransmission eventually affects the rendering latency in host B.

Memory

Figure 46. Observing correlation by aligning two VCs vertically on SSPV

www.manaraa.com

90

Research Outcomes Demonstrated in Step 5:
Ability to manipulate visualization component using SSPV: It is able to align

multiple visualization components

Through the problem drilldown processes, we have observed that the URV framework

provides robust visualization creation and composition, which help creation of useful

system-level visualization effectively. Using the RMC directory service, a user is able to

locate resources of interest and access their performance data. Given the type of

performance data, URV is able to identify proper visualization component(s) by querying

the performance visualization ontology. Such identified visualization components are

easily specialized with the actual data and plugged into the SSPV. SSPV provides a

greater flexibility in manipulation of multiple visualization components. In particular, we

can apply composition operations against multiple visualization components with a few

button clicks.

7.3 Summary

This Chapter provided the proposed methodologies, principles, and software with an

end-to-end performance monitoring testbed. First, we presented a performance

visualization system that is built based on URV framework. The system consists of

multiple web services that implement knowledge querying and composition, and SSPV as

an end-user monitoring tool. For the testbed, we implemented the performance

monitoring scenario introduced in Chapter 1 with a simulation package. The section 7.2.3

described problem drilldown processes in detail, focusing on demonstrating associated

research outcomes. Through the case study, this Chapter shows the abilities of retrieving

www.manaraa.com

91

data of interest, identifying proper visualizations systematically, composing multiple

visualizations dynamically based on graphical primitives or knowledge, and manipulating

visualizations with the SSPV.

www.manaraa.com

92

CHAPTER 8. RELATED WORK

This Chapter provides the related work in three relevant research areas. First, we

present three different approaches, such as taxonomy, automatic visualization, and

component-based visualization, in the area of information visualization that influenced

this research. We then review existing performance visualizations. Finally, current

performance monitoring issues associated with this research will be discussed with

several grid monitoring frameworks and their underlying architectures.

8.1 Visualization Taxonomy

The taxonomy of visualizations helps designers to determine how to visually display

information. In the area of information visualization, numerous taxonomies have been

developed in terms of a look, a usage, and operators [21] [22] [24] [79] [105]. Shneiderman

divided information visualization techniques using seven visual data types: temporal, ID,

2D, 3D, multi-D, tree, and network [105]. He also categorized visualizations by task (e.g.,

overview, zoom, filter, and so on). As another data-centric taxonomy, Mackinlay and

Card described and analyzed portions of design space in order to understand the

differences among visualization designs [21]. Using three different data types (nominal,

ordered, quantitative) and visual encoding (e.g., color, size), they described the major

types of visualizations such as scientific visualization and multi-dimensional tables. Their

taxonomies have provided many visualization researches with a data-based visualization

selection. This research takes advantages of both Shneiderman's and Mackinlay's

approaches in designing a representation of visualization knowledge. Focusing on

www.manaraa.com

93

performance visualization, Reed and Ribler constructed a taxonomy based on data types

[84]. To describe performance views, they defined three metrics: univariate or

multivariate, ordinal or categorical, and static or dynamic.

Our research contribution to the visualization taxonomy area is to provide a way of

extending the existing visualization categorization to incorporate knowledge. The

knowledge of interest as a metric is an applicable problem domain that helps evaluate the

usefulness of a visualization. This research further categorizes existing visualizations by

their knowledge so that it provides more comprehensive and efficient assistance in

visualization selection. In particular, we use a RDF-based representation, which can be

shared and manipulated systematically. Such a systematically sharable representation has

not been supported before this research. In addition, this research employs a query-answer

reasoning process for querying knowledge. By reasoning the query, the system can search

matched visualizations more effectively.

8.2 Automatic Visualization

There are two different approaches in automatic visualization: rule-based and

example-based. Automatic Presentation Tool (APT) [70] constructs a visual presentation

by using a set of predefined design rules that map the data to be conveyed onto desired

visual formalisms. In this approach, a visualization design including the perspective and

the graphical representations can be codified as sentences in a graphical language. A

given set of data is broken down until it matches a primitive language. By composing

each primitive language, a final language is constructed; a final visual presentation is

created. Exploiting the composition approach of APT, this research extends the APT

approach to support knowledge-level composition. Our composition process is similar to

www.manaraa.com

the APT approach in a way that first constructs a representation of composite view. When

composing two visualizations, we first merge the knowledge of each visualization. In

contrast to APT which always creates a new visualization, our approach finds proper

visualizations, which support a new combined knowledge, from the existing

visualizations. In such a way, this research has improved the reusability of visualization

significantly.

Sage [47] is an example-based visualization system that automatically presents

quantitative and relational data using numerous variations and syntheses of 2D static

displays. It starts with a set of existing visual presentations (examples). Upon a user's

request (e.g., finding presentations that are suitable for my data), the system can search

through its example database, and retrieve the most relevant examples. The retrieved

examples can then be reused or adapted to the new situation. Sage leverages APT in terms

of the number and complexity of graphical displays and data types to be considered. This

research then leverages the Sage's approach in a way that supports the knowledge-level

reuse of visualization. Both APT and Sage are limited to the data type based visualization

creation, which is simple and robust.

Their approaches, however, are not enough when exploited for visualization

composition. Since they only consider data type, the semantics of existing visualizations

(i.e., what the visualization is about) are lost during composition. Visualization

composition in their approaches simply means merging data sets and creating a new

visualization, which does not carry over existing knowledge about visualization. For

instance, visual elements, which are defined in previous views, are lost in the new

composed view; the semantic of visual elements (e.g., a red rectangle means a high CPU

load) can be presented with different visual elements (e.g., after composed, the red

rectangle CPU load information can be encoded into a network link, which is an incorrect

www.manaraa.com

95

encoding). This is because that their approaches do not consider the semantic of visual

elements and visualizations. As long as the data type is matched, they just encode data

into any visual element without semantic validation. In contrast, the new visualization,

which is identified via our composition process, reflect all the knowledge of source

visualizations. In our approach, before we builds a new composed visualization, we first

validates the composition semantically. In other words, we first verifies whether there is

proper visualization(s) that can accommodate all composed knowledge, and once verified,

we construct the composed view by plugging the visual elements of source views into the

newly identified visualization. In that way, the semantics of visual elements and

visualizations are preserved in the new composed visualization.

8.3 Component-based Visualization

A component-based framework has been widely used to reuse specific visualization

modules. AVS [2] and VTK [56] have been developed based on a pipelined and

component-based architecture. These systems provide visualization developers with

various software modules, such as data load modules, filtering modules, and rendering

modules, allowing the developers quickly to compose them into a final visualization. The

systems are flexible in the sense that components can be combined in multiple ways,

thereby allowing a wide variety of visualization tasks. In addition, they provide

programming interfaces for module developers to add new components to the systems.

This feature makes the systems extensible. This research is differentiated from these

systems in the sense that it provides sharable visualization knowledge. Neither AVS nor

VTK supports a certain methodology for sharing visualization knowledge. Visualization

www.manaraa.com

96

users have little chance to learn about design principles and knowledge behind the

visualizations. Our research addresses this reusability issue.

Snap-Together visualization [77] is a component-based framework that enables users

to construct custom exploration interfaces by coordinating multiple views. Using Snap

API, visualization developers can make their visualizations snap-able. Once snap-able,

the visualizations are controlled by custom exploration methods. This research is

differentiated from Snap-Together, in terms of a data domain and guidance availability.

Our research focuses on heterogeneous performance data while Snap-Together focuses

primarily on a fixed relational data. In addition, in Snap-Together visualization, a

visualization developer is in charge of selecting visualization components to be

coordinated; no guidance is available. On the other hand, this research provides a

systematic guidance on creating visualizations. By reasoning against the performance

visualization ontology, our visualization framework suggests users proper visualizations

that meet user goals.

The Snap-Together visualization focuses on correlation in visualization control; a user

can control multiple visualizations in a single interface. The data presented in each

visualization are correlated. In contrast, this research focuses on correlation in

visualization itself. We present visual correlation in a single composed view. Regarding

the control, this research provides a spreadsheet-based visualization tool that enables

manipulation of multiple visualization components. The spreadsheet supports time-based

control, which can correlate multiple data at the same timestamp.

www.manaraa.com

97

à- Q genex
O id

-Û images
Û jodi

è Ù meds
; Ù mspape

progs

$• O TreeMap97 Û
s Bvhp

é-0 dev
-Û flip
O new

-Û tbkproto

G 3d
O combo

f- O images
ê-Û papers

O west
-CD

Ueu^t

Gi«d - Coitierrfs o* Fofdei 11 /3|

qt3se»up Appbcabon 1Q/Z3/90 7:05:0u PM
10/29/98 653:56 RM 3751534 QuickTime Movie

1039142 KV29/98 6:49:52 PM QuickTime Movie
7334158 QuickTime Movie 10/29/98 654:16PM

10/29/98 705:26 PM 9416350 QuickTime Movie I4qt3.qt
10/29/987:24:36 PM 7613621

Figure 47. Snapshot of Snap-Together [77]: Snaps multiple visual interfaces (e.g., tree
view, table view) to explore file hierarchies.

8.4 Performance Visualization

Rivet [17] is a visualization system for the study of complex computer systems. The

goal of Rivet is to provide a rapid development of interactive visualizations for large data

sets and to allow users to add new visualization components. Like APT, Rivet breaks

down a visualization into graphical primitives and by matching each primitive with data,

constructs a new visualization. It uses a component-based architecture and provides a

unified platform for the analysis and visualization of computer systems. In addition, like

Snap-Together, Rivet provides coordination mechanisms, which add extensive

interactivity. Both Rivet and this research employ a modular design in a way that

decouples visualization and data collection (e.g., instrumentation). This modular design

makes it easy to apply visualizations to wide range of problems. On the other hand, Rivet

www.manaraa.com

98

does not support dynamic composition; once a visualization is created, it remains a fixed

view.

NetLogger Visualization (NLV) [76] is a visualization tool for NetLogger [108].

NetLogger is a performance analysis tool performing detailed end-to-end analysis of

distributed applications. It includes instrumentation tools for applications, host systems,

and networks. NetLogger is useful for debugging and tuning distributed applications, and

detecting bottleneck. The key feature of NLV is to correlate performance data from all

own instrumentation. All performance data from different resources are synchronized and

viewed in a single window (i.e., a system-level view). The system-level view of NLV,

however, is constant; it does not support dynamic integration with newly available

performance data. Exploiting synchronization methodology of NLV, this research

leverages the current data correlation feature of NLV by creating system-level views

dynamically.

Vampir [117] is a performance analysis tool that provides a convenient way to

visually analyze runtime event traces produced by MPI applications. Vampir supports

various performance visualizations, including a timeline, communication statistics, and

execution statistics visualizations. In addition, each visualization supports various user

interactions, such as zoom, pan, select, and expand. Vampir, however, is resource- and

platform-dependent; it is neither applicable for new problem domains nor operable on

different platforms. A fundamental difference is that this research focuses on the

uniformity and reusability of visualizations while Vampir focuses on the interactivity and

variety of visualizations (i.e., powerful drilldown and more display options).

8.5 Performance Monitoring Tools

www.manaraa.com

In grid environments, there are potentially thousands of distributed resources to be

monitored and thousands of entities that use these performance information. A grid

monitoring system is differentiated from general monitoring systems in the sense that it

must scale across networks as well as accommodate a large number of heterogeneous

resources. In the area of grid resource monitoring, several monitoring frameworks have

been developed to provide an extensible infrastructure for easy access of distributed

performance data.

Grid Monitoring Architecture (GMA) [109] is a new performance monitoring

architecture in grid computing that has been proposed by a Global Grid Forum (GGF)

performance group. The basic model of GMA consists of three elements: a directory

service, a producer, and a consumer. Producers publish their existence in directory service

entries. A directory service is used to locate producers and consumers. Consumers can

use the directory service to discover the producers of interest. A producer provides

performance data and a consumer uses them. GMA influenced a visualization model of

this research, which was described in Chapter 2.

Network Weather Service (NWS) [124] is an example of a monitoring framework to

support monitoring environments with data coming from measurement sensors. NWS

consists of four processes: a persistent state process, a name server process, a sensor

process, and a forecaster process. Each distributed sensor process gathers and sends

performance measurement (e.g., CPU load, network load) to a persistent state process. A

persistent state process stores and retrieves the performance measurement. A name server

provides a directory service to bind process and data names with contact information. In

addition, using numerical models, a forecaster process produces predictive data. To

generate a forecast, the forecaster process uses the relevant measurement history from a

persistent state process. The time-based ordered measurements may then be treated as a

www.manaraa.com

100

time series for forecasting. The main goal of NWS is to provide accurate forecasts of

dynamically changing performance characteristics from a distributed set of resources.

Both NWS and this research address an information integration issue. Each work,

however, has a different purpose; this research focuses on better presentation of a

performance problem while NWS focuses on better prediction of the problem.

GridMapper is a tool for monitoring and visualizing the behavior of grid systems [4],

It builds on basic mechanisms for accessing performance information sources and for

mapping from domain names to physical locations. The visualization system supports the

layout of distributed sets of sources and animation of their behaviors (mostly status).

GridMapper focuses on visualizations for the overview of resource behaviors while this

research focuses on visualization composition for performance problem drill-downs.

The Information and Monitoring Services Architecture (IMSA) is one of work

packages initiated by the DataGrid project [32] [125]. IMSA is a reference

implementation of GMA. IMSA uses a relational model to represent performance events

and HTTP servlet technology for interoperable communication. This approach has the

benefit of being flexible in the query language and simple to build a distributed system.

IMSA permits both job performance optimization as well as tracing. The purpose of this

work package is to provide a flexible infrastructure to provide easy access to current and

archived information about grid resources. This research is differentiated from IMSA in

terms of a way of integrating performance data. In IMSA, integration is done at the data

level; using a SQL query, system managers integrate multiple performance data of

interest in DB. IMSA, however, does not support visualizations for these integrated data.

It still relies on resource-specific visualizations with fixed views. In this research,

integration is done at the visualization level so that integrated data are directly visible.

www.manaraa.com

101

These tools and many others provide a wide range of services and capabilities;

however, many of them are designed for specific uses and application areas. We use the

lessons learned on building and using these tools as the guiding motivation to develop an

integrated suite of framework to aid the creation and management of performance

visualizations.

www.manaraa.com

102

CHAPTER 9. CONCLUSIONS

Most performance visualization techniques have focused on specific types of

performance events at a certain level of the system and have been invented in isolation

without consideration for the interactions and dependencies within the larger system. A

distributed application in heterogeneous environments, however, is often engaged with

various types of performance problems during its execution across multiple levels of the

system. Addressing these, this research presents a new performance visualization

framework, called Uniform Resource Visualization (URV), which provides a novel

approach for reusable, distributed, and composable visualizations.

9.1 Summary of Contributions

This research contributes to the three areas (qualities of performance visualization,

visualization methodology, visualization software) with specific research outcomes.

A. Qualities of a performance visualization

1. This research extends current visualization representation techniques to the

field of performance visualization: Chapter 2 provides basic information

about performance visualization, defining the different aspects of a

performance view, including a data, graphical primitive, visual design, and

visual element. This definition provides a basis to further define the elements

of performance visualization. The elements include a resource, a resource

monitoring component, a visualization component, and a monitoring controller.

www.manaraa.com

103

We formalize the representation of each element so that the knowledge

representation about visualization can use. Incorporating existing data-centric

visualization categorization, Chapter 3 provides a new knowledge-based

visualization categorization. The performance visualization knowledge

presents 'what types of resources, performance data type, and/or analysis type

have been well presented with a certain visual design'. Chapter 3 presents an

ontology-based performance visualization knowledge representation, called

Performance Visualization Ontology (PVO). With the PVO, users are able to

query well-recognized visual designs for observing a particular performance

problem. Users do not need to reinvent a new visual design unless a target

problem domain is completely unrelated with ones denoted in the PVO. We

present a formal representation of PVO with DAML, which leads to a

systematic reuse and manipulation of the knowledge.

B. Visualization methodology

1. This work creates a methodology for designing reusable visualization

components. Chapter 4 provides the definition of visualization component,

including the requirement of building composable and sharable visualization

components. In particular, we provide a set of uniform interfaces and data

structures of visualization components that are required for information

integration into visualization components. Further, we present a visualization

componet creation methodology, including the guideline of selecting proper

graphical primitives. This methodology addresses the heterogeneity in creation

of visualization components. A visualization component which is created

based on the methodology is able to be consistently accessed and integrated

www.manaraa.com

104

into the visualization system. The methodology defines several necessary

steps: knowledge definition, visual design definition, graphical primitive

determination, graphical primitive implementation, template VC creation, and

VC specialization. Chapter 4 provides the example of each step..

2. This work provides a methodology for creating system-level views by

composition: Chapter 5 provides the principle and methodology for system-

level view creation. Chapter 5 provides categorization of visualization

compositions to help users determine an appropriate composition method to

meet the user goals. The levels include a component-level, graphical

primitive-level, and a view-level. Further, this research categorizes two

composition operations; merge for graphical primitive level and synthesis for

view-level compositions. The merge operation is useful for comparing

something, and the synthesis is useful for enhancing visual correlation and

observing global information. Chapter 5 presents a methodology for synthesis,

which is knowledge-based composition. The methodology defines three steps:

knowledge composition, visualization search by the composed knowledge, and

a final VC creation.

C. Visualization software

1. This research presents a spreadsheet-based performance visualization tool:

Chapter 6 presents a new spreadsheet-based visualization tool, called

Spreadsheet for System-level Performance Visualization (SSPV), which

provides a robust and flexible visualization environment for dynamic creation

of system-level visualizations. It provides a structured way of observing,

www.manaraa.com

105

exploring, understanding, and managing performance problems. SSPV extends

Spreadsheet in Information Visualization (SIV) in a way that supports

performance data and composition operations (merge and synthesis). In

addition, SSPV supports its own built-in RMC directory browser for easy

retrieval of performance data of interest by browsing all available RMCs

2. This research presents a performance visualization framework: Chapter 7

presents a performance visualization system. The system is built using URV

framework. The framework consists of web services that implement

knowledge querying and composition, which provides users with software

modules to help create a performance visualization system in a consistent way.

To demonstrate the system, we develop a testbed that presents the

performance monitoring scenario introduced in Chapter 1. The testbed is built

with a simulation package. Chapter 7 also presents the actual problem

drilldown processes with the developed visualization system. Through the case

study, we show the abilities of retrieving data of interest, systematically

identifying proper visualizations, dynamically composing multiple

visualizations based on graphical primitives or knowledge, and manipulating

visualizations with the SSPV.

9.2 Future Work

Several extensions of this research include:

• Feedback-based Performance Visualization Ontology: While certain

visualization knowledge works well for particular users, it may not well present

www.manaraa.com

106

some other's performance scenarios. In such cases, we may be able to incorporate

user feedback into the PVO. For instance, a user rating value can be added to each

visualization instance entry as a weight value which can further narrow down the

search.

• Extension to other visualization domains: The proposed methodologies and

principle are extensible to incorporate other types of visualization. For instance,

PVO can be extended to the area of scientific visualizations by identifying key

concepts and properties of most scientific visualizations.

• Extension of Spreadsheet-based System-level Performance Visualization

(SSPV): SSPV can be extended to work in an immersive VR environment, as

shown in Figure 48. A VR-based monitoring environment provides additional

dimensions for exploring, representing, and interacting with the data. It is

particularly effective to maintain a context (or "big picture") while using interactive

drilldown to diagnose performance problems. For example in (a), suppose a

network manager or chip designer is analyzing the performance of subnets

connected with channels. Each SSPV in the C6 presents performance information

about the resources in a particular subnet, and the link colors between SSPVs

represent channel latencies. As another example in (b), a 3D SSPV is comprised of

a set of 2D SSPV slices. Each 2D SSPV presents performance information at a

certain time. A user can be immersed in both the time-varying behavior and

correlated behavior across nodes and levels.

www.manaraa.com

107

(a) Linked Multiple SSPVs (b) 3D SSPV

Figure 48. Extension of SSPV

www.manaraa.com

108

APPENDIX. PERFORMANCE VISUALIZATION ONTOLOGY

This is the DAML representation of Performance Visualization Ontology that is used

in this research.

<?xml version="1.0" encoding="ISO-8859-1 "?>
<rdf: RDF xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:ns0="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#"
xmlns:oiled="http://img.cs.man.ac.uk/oil/oiled#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#">
<daml: Ontology rdf: about="">

<dc:title>" ; An Ontology"</dc:title>
<dc : datex/dc : date>
<dc:creator>Kukj in Lee</dc:creator>
<dc:description>Performance Visualization

Ontology</dc: descriptions
</daml:0ntology>

<!— Class Definition —>

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#BAR_CHART_DESI
GN">

<rdfs:1abel>BAR_CHART_DESIGN</rdf s :label>
<rdfs :subClassOf>

<daml: Class
rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#VISUAL_DESIGN"
/>

</rdfs :subClassOf>
</daml:Class>

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#ANALYSIS_TYPE"
>

<rdfs :label>ANALYSIS_TYPE</rdfs :label>
</daml:Class>

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#PERFORMANCE_DA
TA">

<rdfs :1abel>PERFORMANCE_DATA</rdf s :label>
</daml:Class>

<daml: Class
rdf : about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#PERFORMANCE_ME
TRIC_DATA">

<rdfs :1abe1>PERFORMANCE_METRIC_DATA</rdf s :label>
<rdfs :subClassOf>

http://www.daml.org/2001/03/daml+oil%23
http://purl.org/dc/elements/1.1/
http://img.cs.man.ac.uk/oil/oiled%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23
http://www.w3.org/2000/10/XMLSchema%23
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23VISUAL_DESIGN
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23ANALYSIS_TYPE

www.manaraa.com

109

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml# PERFORMANCE_DA
TA" / >

</rdfs :subClassOf>
</daml:Class>

<daml: Class
rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#GANTT_CHART_DE
SIGN">

<rdfs :label>GANTT_CHART_DESIGN</rdf s :labels
<rdfs :subClassOf>

<daml: Class
rdf:about="http://www.vrac.iastate.edu/~leekukj i/pvo.daml#VISUAL_DESIGN"
/>

</rdfs :subClassOf>
</daml:Class>

<1— Sub Class Definition — >

<daml:Class
rdf :about="http://www.vrac.iastate,edu/-leekukji/pvo.daml#VISUAL_DESIGN"
>

<rdfs :label>VISUAL_DESIGN</rdf s :labels
<rdfs :subClassOfs

<damlRestrictions
<daml:onProperty

rdf: resource^"http://www.vrac.iastate.edu/~leekukji/pvo.daml#supportAnal
ysisType"/>

<daml:hasClasss
<daml: Class

rdf :about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#ANALYSIS_TYPE"
/ >

</daml:hasClasss
</damlRestrictions

</rdfs :subClassOfs
<rdfs :subClassOfs

<daml: Restrictions
<daml:onProperty

rdf :resource="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#supportPerf
ormanceData"/>

<daml:hasClasss
<daml: Class

rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</daml:hasClasss
</daml: Restrictions

</rdfs :subClassOfs
<rdfs :subClassOfs

<daml: Restrictions
<daml:onProperty

rdf : resource^"http://www.vrac.iastate.edu/-leekukji/pvo.daml#supportReso
urce"/>

<daml:hasClasss
<daml: Class

rdf :about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#RESOURCE"/>
</daml:hasClasss

</damlRestrictions
</rdfs :subClassOfs

</daml .-Classs

http://www.vrac.iastate.edu/-leekukji/pvo.daml%23ANALYSIS_TYPE
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23RESOURCE%22/

www.manaraa.com

110

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#SCATTER_PLOT_D
ESIGN">

<rdfs : 1abe1> SCATTER_PLOT_DESIGN</rdf s : labels
<rdfs :subClassOf>

<daml: Class
rdf:about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#VISUAL_DESIGN"
/>

</rdfs :subClassOf>
</daml:Class>

<daml: Class
rdf:about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#MATRIX_VIEW_DE
SIGN">

<rdfs :label>MATRIX_VIEW_DESIGN< /rdf s :labels
<rdfs :subClassOf>

<daml: Class
rdf:about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#VISUAL_DESIGN"
/>

</rdfs :subClassOf>
</daml:Class>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#SPACE_TIME_DIA
GRAM_DESIGN">

<rdfs :label>SPACE_TIME_DIAGRAM_DESIGN</rdf s :labels
<rdfs :subClassOf>

<daml:Class
rdf:about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#VISUAL_DESIGN"
/>

</rdfs :subClassOf>
</daml:Class>

<daml: Class
rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#PIE_CHART_DESI
GN">

<rdfs :label>PIE_CHART_DESIGN</rdf s : labels
<rdfs :subClassOf>

<daml:Class
rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#VISUAL_DESIGN"
/>

</rdfs :subClassOf>
</daml:Class>

<daml: Class
rdf : about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#LINE_CHART_DES
IGN" >

<rdfs :1abe1>LINE_CHART_DESIGN</rdf s :labels
<rdfs :subClassOf>

<daml:Class
rdf :about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#VISUAL_DESIGN"
/>

</rdfs :subClassOf>
</daml:Class>

<daml: Class
rdf : about="http://www.vrac.iastate.edu/~leekukj i/pvo.daml# PERFORMANCE_EV
ENT_DATA">

<rdfs : label>PERFORMANCE_EVENT_DATA</rdf s : labels
<rdfs :subClassOf>

http://www.vrac.iastate.edu/-leekukji/pvo.daml%23VISUAL_DESIGN
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23VISUAL_DESIGN
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23VISUAL_DESIGN

www.manaraa.com

I l l

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#PERFORMANCE_DA
TA " / >

</rdfs :subClassOf>
</daml:Class>

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#NETWORK_VIEW_D
ESIGN">

<rdfs :label>NETWORK_VIEW_DESIGN</rdf s :label>
<rdfs :subClassOf>

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#VISUAL_DESIGN"
/>

</rdfs :subClassOf>
</daml:Class>

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#RESOURCE">

<rdfs :1abe1>RESOURCE</rdf s :label>
</daml:Class>

<!-- property Definition —>

<daml:ObjectProperty
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#supportPerform
anceData">

<rdfs :label>supportPerformanceData</rdfs :label>
<rdfs : range>

<daml: Class
rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml# PERFORMANCE_DA
TA " / >

</rdfs:range>
</daml:Obj ectProperty>

<daml:ObjectProperty
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#supportAnalysi
sType">

<rdfs :label>supportAnalysisType</rdfs :label>
<rdfs : range>

<daml: Class
rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#ANALYSIS_TYPE"
/>

</rdfs :range>
</daml:Obj ectProperty>

<daml:Obj ectProperty
rdf :about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#supportResourc
e">

<rdfs :label>supportResource</rdfs :label>
<rdfs :range>

<daml: Class
rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#RESOURCE"/>

</rdfs :range>
</daml:Obj ectProperty>

< i— Instance Definition -->
<rdf: Description

rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Processor">

http://www.vrac.iastate.edu/-leekukji/pvo.daml%23VISUAL_DESIGN
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23RESOURCE%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Processor

www.manaraa.com

112

<rdf:type>
<daml:Class

rdf: about="http://www.vrac.iastate.edu/~leekukj i/pvo.daml#RESOURCE"/>
</rdf:type>

</rdf : Descriptions-

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#QueueLength">

<rdf:type>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf:type>
</rdf:Description>

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Delay">

<rdf:type>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf:type>
</rdf:Description>

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Start">

<rdf:type>
<daml: Class

rdf : about = "http : //www. vrac. iastate . edu/-leekukj i/pvo. daml # PERFORMANCE_EV
ENT_DATA"/>

</rdf:type>
</rdf:Description>

<rdf: Description
rdf : about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Trend">

<rdf:type>
<daml: Class

rdf : about="http://www.vrac.iastate.edu/~leekukj i/pvo.daml#ANALYSIS_TYPE"
/>

</rdf:type>
</rdf:Description>

<rdf: Description
rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Write">

<rdf:type>
<daml: Class

rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_EV
ENT_DATA"/>

</rdf:type>
</rdf:Description>

<rdf description
rdf :about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Avai1able">

<rdf:type>
<daml: Class

rdf : about = "http : / /www. vrac . iastate . edu/-leekukji/pvo. daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf:type>
</rdf:Description>

http://www.vrac.iastate.edu/~leekukji/pvo.daml%23QueueLength
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Start
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Write
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Avai1able

www.manaraa.com

113

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/~leekukj i/pvo.daml#Software">

<rdf:type>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#RESOURCE"/>
</rdf:type>

</rdf:Description>

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#Relationship">

<rdf:type>
<daml: Class

rdf:about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#ANALYSIS_TYPE"
/>

</rdf:type>
</rdf:Description>

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Utilization">

<rdf:type>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf:type>
</rdf : Descriptions

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#Structure">

<rdf:type>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#ANALYSIS_TYPE"
/>

</rdf:type>
</rdf:Description>

<rdf: Description
rdf : about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#Comparison">

<rdf:type>
<daml:Class

rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#ANALYSIS_TYPE"
/>

</rdf:type>
</rdf: Descriptions

<rdf: Description
rdf : about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#Architecture">

<rdf:type>
<daml: Class

rdf : about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#RESOURCE"/>
</rdf:type>

</rdf: Description»

<rdf: Description
rdf :about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#NumberOfHops">

<rdf:type>
<daml: Class

rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf:type>
</rdf: Descriptions

http://www.vrac.iastate.edu/~leekukji/pvo.daml%23RESOURCE%22/
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23Relationship
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23ANALYSIS_TYPE
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Utilization
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23Structure
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23ANALYSIS_TYPE
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23Comparison
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23ANALYSIS_TYPE
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23Architecture
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23RESOURCE%22/

www.manaraa.com

114

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#Memory">

<rdf:type>
<daml: Class

rdf:about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#RESOURCE"/>
</rdf:type>

</rdf: Descriptions

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#Acknowledge">

<rdf: types
<daml: Class

rdf:about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml# PERFORMANCE_EV
ENT_DATA" / s

</rdf: types
</rdf: Descriptions

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/~leekukj i/pvo.daml#Contribution"s

<rdf: types
<daml:Class

rdf:about="http://www.vrac.iastate,edu/~leekukj i/pvo.daml#ANALYSIS_TYPE"
/ >

</rdf: types
</rdf: Descriptions

<rdf description
rdf:about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Status"s

<rdf: types
<daml: Class

rdf: about="http://www.vrac.iastate.edu/~leekukj i/pvo.daml#ANALYSIS_TYPE"
/ >

</rdf: types
</rdf: Descriptions

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/~leekukj i/pvo.daml#PacketLoss"s

<rdf: types
<daml: Class

rdf : about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf: types
</rdfdescriptions

<rdf: Description
rdf : about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#Procèss"s

<rdf: types
<daml: Class

rdf : about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#RESOURCE"/>
</rdf: types

</rdf: Descriptions

<rdfdescription
rdf:about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Latency"s

<rdf: types
<daml: Class

rdf :about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf: types

http://www.vrac.iastate.edu/~leekukji/pvo.daml%23Memory
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23RESOURCE%22/
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23Acknowledge

www.manaraa.com

115

</rdf: Descriptions

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Interaction">

<rdf: types
<daml: Class

rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#ANALYSIS_TYPE"
/>

</rdf: types
</rdf: Descriptions

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Hierarchy"s

<rdf: type
rdf: resource^"http://www.daml.org/2001/03/daml+oil#Thing"/>

</rdf:Descriptions

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Bandwidth"s

<rdf: types
<daml: Class

rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf: types
</rdf: Descriptions

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Disk"s

<rdf: types
<daml: Class

rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#RESOURCE"/>
</rdf: types

</rdfdescriptions

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Link"s

<rdf: types
<daml .-Class

rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#RESOURCE"/>
</rdf: types

</rdf descriptions

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Load"s

<rdf: types
<daml: Class

rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf: types
</rdfdescriptions

<rdf: Description
rdf : about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Loss"s

<rdf: types
<daml: Class »

rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml# PERFORMANCE_ME
TRIC_DATA"/>

</rdf: types
</rdf: Descriptions

http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Interaction
http://www.daml.org/2001/03/daml+oil%23Thing%22/
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23RESOURCE%22/

www.manaraa.com

116

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Read">

<rdf:type>
<daml: Class

rdf:about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#PERFORMANCE_EV
ENT_DATA"/>

</rdf:type>
</rdf: Descriptions

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Send">

<rdf:type>
<daml:Class

rdf:about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_EV
ENT_DATA"/>

</rdf:type>
</rdf: Description»

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Size">

<rdf:type>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/>

</rdf:type>
</rdf: Description»

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Stop">

<rdf:type>
<daml:Class

rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_EV
ENT_DATA"/>

</rdf:type>
</rdf: Description»

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Used">

<rdf: type»
<daml: Class

rdf:about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#PERFORMANCE_ME
TRIC_DATA"/»

</rdf: type»
</rdf: Description»

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#OS"»

<rdf: type»
<daml: Class

rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#RESOURCE"/>
</rdf: type»

</rdf description»

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Receive">

<rdf: type»
<daml: Class

rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#PERFORMANCE_EV
ENT_DATA"/>

</rdf: type»

http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Send
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Size
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Stop
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Used
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23RESOURCE%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Receive

www.manaraa.com

117

</rdf: Description»

<rd£: Description
rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#CPU">

<rdf :type>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#RESOURCE"/>
</rdf:type>

</rdf: Description»

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#End">

<rdf:type>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#PERFORMANCE_EV
ENT_DATA"/>

</rdf:type>
</rdf: Description»

<rdf: Description
rdf:about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml# RoundTripTime"
>

<rdf:type>
<daml: Class

rdf:about="http://www.vrac.iastate.edu/~leekukji/pvo.daml# PERFORMANCE_ME
TRIC_DATA"/>

</rdf:type>
</rdf: Description»

<!— Visual Design Instance Definition -->

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.daml# BarChartIns tan
ce">

<rdf:type>
<daml: Class

rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#BAR_CHART_DESI
GN" />

</rdf:type>
<nsO:supportAnalysisType

rdf : resource^"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Trend"/>
<nsO:supportPerformanceData

rdf: resource^"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Bandwidth"/
>

<nsO:supportResource
rdf : resource^"http://www.vrac.iastate.edu/~leekukj i/pvo.daml#Link"/>

</rdf:Description>

<rdf: Description
rdf : about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml# LineChartIns ta
nce">

<rdf:type>
<daml: Class

rdf : about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#LINE_CHART_DES
IGN"/>

</rdf:type>
<nsO:supportResource

rdf : resource^"http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Processor"/

http://www.vrac.iastate.edu/~leekukji/pvo.daml%23CPU
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23RESOURCE%22/
http://www.vrac.iastate.edu/~leekukji/pvo.daml%23End
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Trend%22/

www.manaraa.com

118

<nsO:supportPerformanceData
rdf:resource="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Bandwidth"/
>

<nsO:supportAnalysisType
rdf:resource="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Trend"/>

</rdf:Description>

<rdfdescription
rdf: about="http://www.vrac.iastate.edu/-leekukji/pvo.damlttPieChartlnstan
ce">

<rdf:type>
<daml: Class

rdf: about="http://www.vrac.iastate.edu/~leekukji/pvo.daml#PIE_CHART_DESI
GN" />

</rdf:type>
<nsO:supportResource

rdf:resource="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Memory"/>
<nsO:supportPerformanceData

rdf:resource="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Available"/
>

<nsO:supportAnalysisType
rdf:resource="http://www.vrac.iastate.edu/-leekukji/pvo. daml#Contributio
n"/>

</rdf:Description>

<rdf: Description
rdf: about="http://www.vrac.iastate.edu/-leekukj i/pvo.daml#ScatterPlotIns
tance">

<rdf:type>
<daml: Class

rdf :about= "http : / /www. vrac. iastate. edu/~leekukji/pvo. daml#SCATTER_PLOT_D
ESIGN"/>

</rdf:type>
<nsO:supportResource

rdf : resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Processor"/
>

<nsO:supportResource
rdf : resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Memory"/>

<nsO:supportPerformanceData
rdf: resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Load"/>

<nsO:supportPerformanceData
rdf: resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Available"/
>

<nsO:supportAnalysisType
rdf: resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Relationshi
p" />

</rdf:Description>

<rdf: Description
rdf: about:"http://www.vrac.iastate.edu/~leekukj i/pvo.daml#GanttChartInst
ance">

<rdf:type>
<daml: Class

rdf : about: "http : / /www. vrac . iastate . edu/-leekukji/pvo . daml#GANTT_CHART_DE
SIGN"/>

</rdf:type>
<nsO:supportResource

rdf : resource:"http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Process"/>
<nsO:supportPerformanceData

rdf : resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Busy"/>

http://www.vrac.iastate.edu/-leekukji/pvo
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Memory%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Load%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Busy%22/

www.manaraa.com

119

<nsO:supportPerformanceData
rdf : resource: "http : / /www. vrac . iastate. edu/-leekukj i/pvo. daml#Idle" />

<nsO:supportAnalysisType
rdf : resource: "http: / /www. vrac . iastate . edu/-leekukj i/pvo . daml#Status " />

</rdf:Description>

<rdf description
rdf:about= "http://www. vrac.iastate.edu/-leekukji/pvo.daml#SpaceTimeDiagr
amlnstance">

<rdf:type>
<daml:Class

rdf : about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#SPACE_TIME_DIA
GRAM_DESIGN"/>

</rdf:type>
<nsO:supportResource

rdf:resource="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Process"/>
<nsO:supportPerformanceData

rdf:resource="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Send"/>
<nsO:supportPerformanceData

rdf:resource="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Receive"/>
<nsO:supportPerformanceData

rdf: resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Busy"/>
<nsO:supportPerformanceData

rdf: resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Idle"/>
<nsO:supportAnalysisType

rdf: resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Status"/>
<nsO:supportAnalysisType

rdf: resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Interaction
"/>

</rdf:Description>

<rdf: Description
rdf: about:"http://www.vrac.iastate.edu/~leekukj i/pvo.daml#MatrixViewInst
ance">

<rdf:type>
<daml: Class

rdf: about:» http://www.vrac.ias tate.edu/-leekukji/pvo.daml#MATRIX_VIEW_DE
SIGN"/>

</rdf:type>
<nsO:supportResource

rdf : resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Link"/>
<nsO:supportPerformanceData

rdf: resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Bandwidth"/
>

<nsO:supportAnalysisType
rdf : resource:"http://www.vrac.iastate.edu/-leekukji/pvo.daml#Interaction
"/>

</rdf: Descriptions

<rdfdescription
rdf :about="http://www.vrac.iastate.edu/-leekukji/pvo.daml#NetworkViewIns
tance">

<rdf:type>
<daml: Class

rdf : about: "http: / /www. vrac . iastate . edu/-leekukj i/pvo . daml #NETWORK_VIEW_D
ESIGN"/>

</rdf:type>
<nsO:supportResource

rdf : resource:"http://www.vrac.iastate.edu/-leekukj i/pvo.daml#Link"/>

http://www
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Process%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Send%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Receive%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Busy%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Idle%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Status%22/
http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Link%22/

www.manaraa.com

120

<ns0:supportResource
rdf:resource="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Processor"/
>

<ns0:supportPerformanceData
rdf:resource="http://www.vrac.iastate.edu/~leekukji/pvo.daml#Bandwidth"/
>

<ns0:supportAnalysisType
rdf:resource="http://www.vrac.iastate.edu/-leekukji/pvo.daml#Status"/>

<ns0:supportAnalysisType
rdf:resource="http://www.vrac.iastate.edu/-1eekukj i/pvo.daml#Structure"/
>

</rdf:Description>

</rdf:RDF>

http://www.vrac.iastate.edu/-leekukji/pvo.daml%23Status%22/

www.manaraa.com

121

BIBLIOGRAPHY

[1] R. M. Adler, "Emerging standards for component software," IEEE Computer,

28(3), March 1995.

[2] Advanced Visual Systems, http://www.avs.com, April 12, 2006.

[3] M. Aeschlimann, P. Dinda, Loukas Kallivokas, J. Lopez, B. Lowekamp, and D.

O'Hallaron, "Preliminary Report on the Design of a Framework for Distributed

Visualization," Parallel and Distributed Processing Techniques and Applications

(PDPTA99), Las Vegas, NV, August 1999

[4] W. Allcock, J. Bester, J. Bresnahan, I. Foster, J. Gawor, J. A. Insley, J. M. Link,

and M. E. Papka, "GridMapper: A Tool for Visualizing the Behavior of Large-Scale

Distributed Systems," 11th IEEE International Symposium on High Performance

Distributed Computing (HPDC-11), Edinburgh, Scotland, July 2002, pp 179-187.

[5] R. Allen and D. Garlan, "A formal basis for architectural connection," ACM

Transactions on Software Engineering and Methodology, 6(3), July 1997, pp. 213-248.

[6] R. Aydt, et al. "Simple Case Study of a Grid Performance System," White paper,

Global Grid Forum, 2002.

[7] M. Baker and G. Smith, "GridRM: A Resource Monitoring System for the Grid,"

International Workshop on Grid Computing, August 2002.

[8] M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim, "mpiJava: An Object-

Oriented Java interface to MPI," International Workshop on Java for Parallel and

Distributed Computing, IPPS/SPDP 1999, San Juan, Puerto Rico, April 1999.

[9] A. Bakic, "PGRT-TTE Reference Manual," http://www.egr.msu.edu/Pgrt/PGRT-

TIE-REF/bookl.htm, April 12, 2006.

http://www.avs.com

www.manaraa.com

122

[10] A. Bakic, "Visual Object Markup Language (VOML) Reference Manual,"

http://www.egr.msu.edu/Pgrt/VOML-REF/dtdelem.htm, April 12, 2006.

[11] A. Bakic, "Visual Object Markup Language (VOML) Tutorial," Available on-line

from http://www.egr.msu.edu/pgrt/V OML-TUT/.

[12] A. Bakic, M. W. Mutka, and D. Rover, "BRISK: A portable and flexible

distributed instrumentation system," In Proceedings of the IEEE 2nd Merged Symposium

IPPS/SPDP 1999 13th International Parallel Processing Symposium & 10th Symposium

on Parallel and Distributed Processing, April 12-16 1999, pp. 387-391.

[13] A. M. Bakic, M. W. Mutka, and D. Rover, "An On-Line Performance

Visualization Technology," In Proceedings of the IEEE Heterogeneous Computing

Workshop, in conjunction with the 2nd Merged Symposium IPPS/SPDP 1999 - 13-th

International Parallel Processing, April 12-16 1999, pp. 47-59.

[14] Z. Balaton, P. Kacsuk, N. Podhorszki and F. Vajda, "Comparison of

Representative Grid Monitoring Tools," Report of the Laboratory of Parallel and

Distributed Systems, Computer and Automation Research Institute of the Hungarian

Academy of Sciences, 2000.

[15] C. Baru, A. Gupta, B. Ludascher, R. Marciano, Y. Papakonstantinou, P. Velikhov,

and V. Chu, "XML-Based Information Mediation with MIX," ACM Conference on

Management of Data, 1999. Available on-line from http://www.npaci.edu/DICE/mix-

system.html.

[16] B. Bederson, J. Meyer, and L. Good, "Jazz: An Extensible Zoomable User

Interface Graphics Toolkit in Java," Technical Report, CS-TR-4137, UMIACS-TR-2000-

30, Department of Computer Science, University of Maryland, College Park, May 2000,

Available on-line from http://www.cs.umd.edu/hcil/jazz/learn/papers/index.shtml.

http://www.egr.msu.edu/Pgrt/VOML-REF/dtdelem.htm
http://www.cs.umd.edu/hcil/jazz/learn/papers/index.shtml

www.manaraa.com

123

[17] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and P. Hanrahan, "Rivet: A

Flexible Environment for Computer System Visualization," Computer Graphics 34(1),

February 2000.

[18] D. Box, D. Ehnebuske, G. Kakivaya, A. layman, N. Mendelsohn, H. F. Nielsen, S.

Thatte, and D. Winer, "Simple Object Access Protocol (SOAP) 1.1," The World Wide

Web Consortium 2000.

[19] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B.

Temko, and M. Yechuri, "A Component Based Services Architecture for Building

Distributed Applications," Ninth IEEE International Symposium on High Performance

Distributed Computing, August 2000.

[20] W. J. Brown, R. C. Malveau, H. W. McCormick HI, and T. J. Mowbray,

"AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis," John Wiley &

Sons, Inc., 1998.

[21] S. K. Card and J. Mackinlay, "The Structure of the Information Visualization

Design Space," IEEE Symposium on Information Visualization, 1997, pp. 92-99.

[22] S. M. Casner, "A Task Analytic Approach to the Automated Design of Graphic

Presentations," ACM Transactions on Graphics, 10(2), April 1991, pp. 111-151.

[23] E. H. Chi and J. T. Riedl, "An Operator Interaction Framework for Visualization

Systems," IEEE Symposium on Information Visualization (InfoVis 98), 1998, pp. 63-70.

[24] E. H. Chi, "A Taxonomy of Visualization Techniques Using the Data State

Reference Model," Proceedings of the IEEE Symposium on Information Visualization

2000, 2000, pp. 69-75.

[25] E. H. Chi, J. Riedl, P. Barry, and J. Konstan, "Principles for Information

Visualization Spreadsheets," IEEE Computer Graphics and Applications (Special Issue

on Visualization), July/August, 1998, pp. 30-38.

www.manaraa.com

124

[26] M. C. Chuah and S. F. Roth, "On the semantic of interactive visualizations,"

IEEE Proceedings of Information Visualization, San Francisco, October 1996, pp. 29-36.

Available on-line from httpV/www.cs.cmu.edu/Groups/sage/subject.htmMsage.

[27] Common Component Architecture Forum, http://z.ca.sandia.gov/~cca-forum/,

April 12, 2006.

[28] CORE A, http://www.corba.org, April 12, 2006.

[29] DAML + OIL Reference Description, http://www.w3.org/TR/daml+oil-reference,

April 12, 2006.

[30] DAML Query Language (DQL) Specification,

http://www.daml.org/2003/04/dql/dql, April 12, 2006.

[31] DARPA Agent Markup Language (DAML), http://www.daml.org, April 12, 2006.

[32] DataGrid Project, http://eu-datagrid.web.cern.ch/eu-datagrid/, April 12, 2006.

[33] DQL Implementation, http://ksl.stanford.edu/projects/dql/, April 12, 2006.

[34] DQL: A Query Language for Semantic Web, http://ksl.stanford.edu/projects/dql/,

April 12, 2006.

[35] Dynamic Java Proxy Classes,

http://java.sun.eom/j2se/l.4/docs/guide/reflection/proxy.html, April 12, 2006.

[36] A. Ebert, M. Bender, H. Barthel, and A. Divi vider, "Tuning a Component-based

Visualization System Architecture by Agents," International Symposium on Smart

Graphics, March 2001.

[37] S. G. Eick, "A visualization tool for Y2K," IEEE Computer, October 1998, pp.63-

69.

[38] S.G. Eick and Thomas A. Ball, "Software visualization in the large," IEEE

Computer, 29(4), 1996, pp. 33-43.

http://www.cs.cmu.edu/Groups/sage/subject.htmMsage
http://z.ca.sandia.gov/~cca-forum/
http://www.corba.org
http://www.w3.org/TR/daml+oil-reference
http://www.daml.org/2003/04/dql/dql
http://www.daml.org
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://ksl.stanford.edu/projects/dql/
http://ksl.stanford.edu/projects/dql/
http://java.sun.eom/j2se/l.4/docs/guide/reflection/proxy.html

www.manaraa.com

125

[39] T. Eidson, "Grid Programming Environments: A Component-compatible

Approach," White paper, Grid Forum Advanced Programming Models Working Group.

Available on-line from http://www.eece.unm.edu/~dbader/grid/WhitePapers/eidson.pdf.

[40] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S.

Tuecke, "A Directory Service for Configuring High-Performance Distributed

Computations," Proceedings of the 6th IEEE Symposium on High-Performance

Distributed Computing, 1997, pp. 365-375.

[41] I. Foster and C. Kesselman (Editors), The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann, 1998.

[42] I. Foster, J. Insley, G. Laszewski, C. Kesselman, and M. Thiebaux, "Distance

Visualization: Data Exploration on the Grid," IEEE Computer, 32(12), December 1999,

pp.36-43.

[43] D. Garlan, R. Allen, and J. Ockerbloom, "Architectural Mismatch or, Why it's

Hard to Build Systems out Existing Parts," Proceeding of the 17th Int. Conf. On Software

Engineering, April 1995.

[44] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos, "CUMULVS: Providing Fault-

Tolerance, Visualization and Steering of Parallel Applications," International Journal of

High Performance Computing Applications, 11(3), August 1997, pp. 224-236.

[45] Global Grid Forum, http://www.gridforum.org, April 12, 2006.

[46] Globus Heartbeat Monitor Specification, http://www-

fp.globus.org/hbm/heartbeat_spec.html, April 12, 2006.

[47] J. Goldstein, S.F. Roth, J. Kolojejchick, and J. Mattis, "A framework for

knowledge based interactive data exploration," Journal of Visual Languages and

Computing, 5, 1994, pp. 339-363.

http://www.eece.unm.edu/~dbader/grid/WhitePapers/eidson.pdf
http://www.gridforum.org

www.manaraa.com

126

[48] D. Gunter and W. Smith, "Schémas for Grid Performance Events," Grid

Performance Working Group White Paper, October 2000, Available on-line from

http://www-didc.lbl.gov/GridPerf/papers/EventSchema.pdf.

[49] P. Harding, C. Just, and C. Cruz-Neira, "Distributed Virtual Reality Using

Octopus," Proceedings of the IEEE Virtual Reality 2001 Conference, March 2001,

Yokohama, Japan.

[50] C. Healey, R. Amant, and M. Elhaddad, "ViA: A perceptual visualization

assistant," In 28th Workshop on Advanced Imagery Pattern Recognition (AIPR-99),

Washington, DC, 1999.

[51] M. T. Heath and J. E. Finger, "ParaGraph: A tool for visualizing performance of

parallel programs," Technical report, Oak Ridge National Laboratory, Oak Ridge, TN,

1994.

[52] M. T. Heath, A. Malony, and D. Rover, "The Visual Display of Parallel

Performance Data," In IEEE Computer, Special Issue on Performance Evaluation Tools

for Parallel and Distributed Computer Systems, 28(11), November 1995, pp. 21-28.

[53] M. T. Heath, A. Malony, and D. Rover, "Parallel Performance Visualization:

From Practice to Theory," IEEE Parallel & Distributed Technology, 3(4), Winter 1995.

[54] H. H. Hersey, S. T. Hackstadt, L. T. Hansen, and A. Malony, "Viz: A

Visualization Programming System," Technical Report CIS-TR-96-05, Department of

Computer and Information Science, University of Oregon, Eugene, OR 97403-1202,

April 1996.

[55] W. Hibbard, "Building 3-D User Interface Components Using a Visualization

Library," Computer Graphics, 36(1), 2002, pp. 4-7.

http://www-didc.lbl.gov/GridPerf/papers/EventSchema.pdf

www.manaraa.com

127

[56] D. Hill and M. Wasilewski, "Development of a Component-Based Visualization

Environment Using the Visualization Toolkit (VTK)," Proceedings of the Visualization

Development Environments, 2000.

[57] F. Howell and R. McNab, "simjava: a discrete event simulation package for Java

with applications in computer systems modeling," In Proceedings of First International

Conference on Web-based Modelling and Simulation, San Diego CA, January 1998.

[58] W. Htirsch and C. Lopes, "Separation of Concerns," Northeastern University

technical report NU-CCS-95-03, Boston, February 1995.

[59] JavaBeans, http://java.sun.com/products/javabeans/, April 12, 2006.

[60] Jpython, http://www.jpython.org, April 12, 2006.

[61] T. Kamada and S. Kawai, "A General Framework for Visualizing Abstract

Objects and Relations," ACM Transactions on Graphics, 10(1), January 1991, pp. 1-39.

[62] K. Karavanic, J. Myllymaki, M. Livny, and B. Miller, "Integrated Visualization of

Parallel Program Performance Data," Special issue on environments and tools for parallel

scientific computing, Parallel Computing 23, 1997.

[63] S. Kerpedjiev, S. Roth, and J. Mattis, "Functional Unification Approach to

Automated Visualization Design," International Symposium on Smart Graphics, Mar

2000.

[64] K. Lee and D. Rover, "A Component-based Framework for Uniform Resource

Visualization," Workshop on Software Visualization, International Conference on

Software Engineering (ICSE 2001), Toronto, Canada, May 2001.

[65] K. Lee and D. Rover, "A Component-based Framework for Uniform Resource

Visualization," In Poster Proceedings of IEEE Symposium on Information Visualization

(InfoVis 2001), San Diego, October 2001.

http://java.sun.com/products/javabeans/
http://www.jpython.org

www.manaraa.com

128

[66] K. Lee and D. Rover, "Uniform Resource Visualization (URV): Services and

Software," Dagstuhl Seminar on Performance Analysis and Distributed Computing,

Waden, Germany, August 2002.

[67] K. Lee and D. Rover, "Uniform Resource Visualization," Industrial Grid Summit,

Paris, France, June 2001.

[68] K. Lee and D. Rover, "A Web Services and Ontology Based Performance

Visualization Framework for Grid Environments", IEEE International Conference on

Cluster Computing, Boston, September 2005.

[69] M. Levoy, "Spreadsheet for images," In Computer Graphics (SIGGRAPH '94

Proceedings), volume 28, SIGGRAPH, 1994, pp. 139 - 146.

[70] J. Mackinlay, "Automating the design of graphical presentations of relational

information," ACM Transactions on Graphics, 5,1986, pp. 110-141.

[71] A. Malony, D. Brown, S. Hackstadt, and B.Mohr. Program analysis environments

for parallel language systems: The TAU environment. In Proceedings of the Second

Workshop on Environments and Tools for Parallel Scientific Computing, May 1994, pp.

162-171.

[72] K. D. Miceli, "A Framework for the Design of Effective Graphics for Scientific

Visualization," NASA Ames Research Center, NAS Systems Division, Applied Research

Branch technical report RNR-92-035, December 1992.

[73] Microsoft COM, http://www.microsfot.com/com, April 12, 2006.

[74] B. Miller, J. Cargille, R. Irvin, K. Kunchithapadam, M. Callaghan, J.

Hollingsworth, K. Karavanic, and T. Newhall, "The Paradyn parallel performance

measurement tools," IEEE Computer, 28(11), November 1995, pp. 37-46.

[75] Z. Nemeth, "Performance Evaluation on Grids: Directions, Issues, and Open

Problems," Report of the Laboratory of Parallel and Distributed Systems, 2002.

http://www.microsfot.com/com

www.manaraa.com

129

[76] Netlogger Visualization, http://www-didc.lbl.gov/NetLogger/nlv/nlvmain.html,

April 12, 2006.

[77] C. North, A "User Interface for Coordinating Visualizations based on Relational

Schemata: Snap-Together Visualization," University of Maryland Computer Science

Dept. Doctoral Dissertation, May 2000. Available on-line from

ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/abstracts/2000-15.abstract.

[78] N. Noy and D. McGuinness, "Ontology Development 101: A Guide to Creating

Your First Ontology,"

http://protégé.standord.edu/publications/ontology_development/ontologyl01.html, April

12, 2006.

[79] OLIVE: On-line. Library of Information Visualization Environment,

http://otal.umd.edu/01ive/, April 12, 2006.

[80] Open Lightweight Directory Access Protocol (LDAP), http://www.openldap.org/,

April 12, 2006.

[81] Parallel tools consortium, http://www.ptools.org, April 12, 2006.

[82] J. M. Purtillo, "The polylith software bus," ACM Transactions on Programming

Languages and Systems, 16(1), January 1994, pp. 151-174.

[83] D. Reed, R. Aydt, R. Noe, P. Roth, K. Shields, B. Schwartz, and L. Tavera.

"Scalable Performance Analysis: The Pablo Performance Analysis Environment," In

Proceedings of the Scalable Parallel Libraries Conference. IEEE Computer Society,

1993.

[84] D. Reed and R. Ribler, "Performance Analysis and Visualization," Computational

Grids: State of the Art and Future Directions in High-Performance Distributed

Computing, I. Foster and C. Kesselman (eds), Morgan-Kaufman Publishers, August 1998,

pp. 367-393.

http://www-didc.lbl.gov/NetLogger/nlv/nlvmain.html
ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/abstracts/2000-15.abstract
http://otal.umd.edu/01ive/
http://www.openldap.org/
http://www.ptools.org

www.manaraa.com

130

[85] D. Reed, K. Shields, W. Scullin, L. Tavera, and C. Elford, "Virtual reality and

parallel systems performance analysis," IEEE Computer, 28(11), November 1995, pp. 55-

67.

[86] L. Renambot, T. Schaaf, H. Bal, D. Germans, and H. Spoelder, "Griz: Experience

with Remote Visualization over Optical Grid," iGrid 2002, September 2002.

[87] R. Ribler, J. Vetter, H. Simitci, and D. Reed, "Autopilot: Adaptive Control of

Distributed Applications", Proceedings of the 7th IEEE Symposium on High-Performance

Distributed Computing, Chicago, IL, July 1998.

[88] L. Rising, The Patterns Handbook: Techniques, Strategies, and Applications,

Cambridge University Press, 1998.

[89] B. Rogowitz and L. Treinish, "An Architecture for Rule-Based Visualization," In

Proceedings of IEEE Visualization '93,1993, pp. 236-243.

[90] S. Roth , M. Chuah , S. Kerpedjiev, J. Kolojejchick, and P. Lucas, "Towards an

information visualization workspace: Combining multiple means of expression," Human-

Computer Interaction Journal, 1997

[91] S. Roth and J. Mattis, "Data Characterization for Intelligent Graphics

Presentation," In Proceedings SIGCHI'90 Human Factors in Computing Systems, Seattle,

WA, ACM, April 1990, pp. 193-200.

[92] S. Roth and J. Mattis. "Automating the Presentation of Information," Proceedings

of the IEEE Conference on Artificial Intelligence Applications, Miami Beach, FL,

February 1991, pp. 90-97.

[93] D. Rover, "Vista: Visualization and Instrumentation of Scalable Multicomputer

Applications," IEEE Parallel and Distributed Technology: Systems and Applications,

1(3), August 1993, p. 83.

www.manaraa.com

131

[94] D. Rover, A. Waheed, M. Mutka, and A. Bakic', "Software Tools for Complex

Distributed Systems: Toward Integrated Tool Environments," IEEE Concurrency, 6(2),

April-June 1998.

[95] D. Rover, Encyclopedia of Distributed Computing, chapter Program Visualization,

Kluwer Academic Publishers, 1999.

[96] D. Rover, Matt W. Mutka, Kurt Stirewalt, and L. Kempel, "Performance

visualization: Uniform resource visualization, 2000," Available on-line from

http://www.egr.msu.edu/Pgrt/URV/urvslides.pdf.

[97] H. Rzepa and P. Murray-Rust, "Chemical Rendering Using CML and SVG,"

http://www.ch.ic.ac.uk/svg/, April 12, 2006.

[98] L. Salisbury, "Automatic Visual Display Design and Creation," Ph D. thesis,

University of Washington, Department of Computer Science and Engineering, 2001.

[99] Scalable Vector Graphics (SVG),

http://www.w3.org/Graphics/SVG/Overview.htm8, April 12, 2006.

[100] J. Schneider, "Components, Scripts, and Glue: A conceptual framework for

software composition," Ph.D. thesis, University of Bern, Institute of Computer Science

and Applied Mathematics, October 1999.

[101] H. Senay and E. Ignatius, "Rules and principles in scientific data visualization,"

Technical report, Department of Computer Science, George Washington University,

Washington, D C, 1990.

[102] H. Senay and E. Ignatius, "VISTA: Visualization Tool Assistant for Viewing

Scientific Data," SIGGRAPH 1990 Course Notes: Data Visualization, 27(5), 1990, pp.

21-25.

http://www.egr.msu.edu/Pgrt/URV/urvslides.pdf
http://www.ch.ic.ac.uk/svg/
http://www.w3.org/Graphics/SVG/Overview.htm8

www.manaraa.com

132

[103] E. Shaffer, S. Whitmore, B. Schaeffer, and D. Reed, "Virtue: Immersive

Performance Visualization of Parallel and Distributed Applications," IEEE Computer,

December 1999, pp. 44-51.

[104] J. Shalf and W. Bethel, "How the Grid Will Affect the Architecture of Future

Visualization Systems," Visualization Viewpoints column, IEEE Computer Graphics and

Applications, May/June 2003.

[105] B. Shneiderman, "The eyes have it: A task by data type taxonomy for information

visualization," Visual Languages 96, 1996.

[106] W. Smith, D. Gunter, and D. Quesnel, "An XML-Based Protocol for Distributed

Event Services," In Proceedings of the 2001 International Conference on Parallel and

Distributed Processing Techniques and Applications, 2001, pp. 1668-1674

[107] B. Spitznage and D. Garlan, "A Compositional Approach for Constructing

Connectors," Proceeding of Working IEEE/IFIT Conference On Software Architecture,

2001.

[108] B. Tiemey, B. Crowley, D. Gunter, M. Holding, J. Lee, and M. Thompson, "A

Monitoring Sensor Management System for Grid Environments," In Proceedings of the

IEEE High Performance Distributed Computing conference (HPDC-9), August 2000.

[109] B. Tiemey, R. Aydt, D Gunter, W. Smith, M. Swany, V. Taylor, and R. Wolski,

"A Grid Monitoring Architecture," White paper, Global Grid Forum, 2002. http://www-

didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-2.pdf, April 12, 2006.

[110] B. Topol, J. Stasko, and V. Sunderam, "PVaniM: A Tool for Visualization in

Network Computing Environments," Concurrency: Practice & Experience, 10(14), 1998,

pp. 1197-1222.

[111] W. Tracz, "Where does reuse start?," In Proceedings of Realities of Reuse

Workshop, 1990.

www.manaraa.com

133

[112] L. Treinish, "A Function-Based Data Model for Visualization," In Proceedings of

the IEEE Computer Society Visualization 99 Late Breaking Hot Topics, October 1999,

pp. 73-76.

[113] H. Truong, T. Fahringer, F. Nerieri, and S. Dustdar, "Performance Metrics and

Ontology for Describing Performance Data of Grid Workflows," IEEE International

Workshop on Grid Performance co-located at the IEEE Cluster Computing and Grid

2005 Conference (CCGrid), May 2005.

[114] L. Tweedie, "Characterizing Interactive Internalizations," In Proceedings ACM

CHI'97, 1997, pp.375-382.

[115] L. Tweedie, "Describing Interactive Visualization Artifacts," in FADTVA 3, T.

Catarci, Ed. Gubbio, Italy, 1996, pp. 63-66.

[116] Unified Modeling Language (UML), http://www.uml.org, April 12, 2006.

[117] Vampir, http://www.pallas.eom/e/products/vampir/index.htm, April 12, 2006.

[118] A. Varshney and A. Kaufman, "FINESSE: A financial information spreadsheet,"

IEEE Information Visualization Symposium, 1996, pp. 70-71.

[119] Visual Insights (Lucent Technologies). Software components, 1998.

http://www.visualinsights.com/components/, April 12, 2006.

[120] VR Juggler, http://www.vrjuggler.org, April 12, 2006.

[121] A. Waheed, W. Smith, J. George, and J. Yan, "An Infrastructure for Monitoring

and Management in Computational Grids," In Proceedings of the Conference on

Languages, Compilers, and Runtime Systems, 2000.

[122] Web Service Architecture, http://www.w3.org/TR/ws-arch/, April 12, 2006.

[123] Web Service Description Language, http://www.w3.org/TR/wsdl, April 12, 2006.

http://www.uml.org
http://www.pallas.eom/e/products/vampir/index.htm
http://www.visualinsights.com/components/
http://www.vrjuggler.org
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl

www.manaraa.com

134

[124] R. Wolski, N. Spring, and J. Hayes, "The Network Weather Service: A

Distributed Resource Performance Forecasting Service for Metacomputing," Future

Generation Computing Systems, 1999.

[125] WP3, Information and Monitoring Services, DataGrid Project,

http://hepunx.rl.ac.uk/edg/wp3/, April 12, 2006.

[126] O. Zaki, E. Lusk, W. Gropp, and D. Swider. "Toward Scalable Performance

Visualization with Jumpshot," High-Performance Computing Applications, 13(2), 1999,

pp. 277-288.

[127] P. Zave and M. Jackson, "Conjunction as Composition," ACM Transactions on

Software Engineering and Methodology, 2(4), October 1993, pp. 379-411.

[128] P. Zave, "A compositional approach to multi-paradigm programming," IEEE

Software, 6(5), September 1989.

[129] J. Zhang, "A representational analysis of relational information displays,"

International Journal of Human-Computer Studies, 44,1994.

[130] M. Zhou and S. Ma, "Representing and Retrieving Visual Presentations for

Example-Based Graphics Generation," International Symposium on Smart Graphics,

March 2001.

[131] M. Zhou and S. Ma, "Representing and retrieving visual presentations for

example-based graphics generation," In Proceedings of Smart Graphics 01, 2001, pp. 87-

94.

http://hepunx.rl.ac.uk/edg/wp3/

	2006
	Uniform resource visualization
	Kukjin Lee
	Recommended Citation

	tmp.1410275899.pdf.bg2TS

